December 20, 2015

Large Scale Polymer Shear Degradation Test Post Job Report

Rev 1 December 20, 2015

Prepared by Amare Mebratu, Halliburton Siv Marie Åsen and Arne Stavland, IRIS

Prepared for

The National IOR Research Centre of Norway

Content

EXECUTIVE SUMMARY	4
BACKGROUND	6
PREPARATION & TEST SET UP	7
PREPARATION Experimental Test Set Up	7 9
ACTUAL LARGE SCALE TEST	10
QUALITY CONTROL MIXING POLYMER SHEAR TEST SAMPLING	10 10 13 15
RESULTS	17
 TEST 1 – 1 000PPM 3630 WITH HALLIBURTON STANDARD ADJUSTABLE CHOKE (CHOKE 1)Job Event Log Test 1 Pump chart – Test 1 Polymer sample analysis – Test 1 TEST 2 – 2 000PPM 3630 WITH HALLIBURTON STANDARD ADJUSTABLE CHOKE (CHOKE 1)Job Event Log Test 2 Pump chart – Test 2 Polymer sample analysis – Test 2 TEST 3 - 10 000PPM 3630 WITH HALLIBURTON STANDARD ADJUSTABLE CHOKE (CHOKE 1)Job Event Log Test 3 Pump chart – Test 3 Pump chart – Test 3 Polymer sample analysis – Test 3 Polymer sample analysis – Test 3 Polymer sample analysis – Test 4 	18 19 20 26 26 26 26 27 28 30 30 31 32 36 36 37 38
 Forymer sample analysis – Test 4 TEST 5 – 2 000 PPM AN125 WITH HALLIBURTON STANDARD ADJUSTABLE CHOKE (CHOKE 1) Job Event Log Test 5 Pump chart – Test 5 TEST 6 – 1 000 PPM AN125 WITH MATEK CHOKE (CHOKE 2) Job Event Log Test 6 Pump chart – Test 6 Polymer sample analysis – Test 6 	

Job Event Log Test 7	51
Pump chart – Test 7	53
Polymer sample analysis – Test 7	54
Test 8 – 1 000 ррм 3630 with Matek Choke (Choke 2)	56
Job Event Log Test 8	56
Pump chart – Test 8	57
Polymer sample analysis – Test 8	58
Test 9 – 1 000 PPM 3630 with fixed Halliburton chokes 20/64 "And 24/64 "	61
Job Event Log – Test 9	61
Pump chart – Test 9	64
Polymer sample analysis – Test 9	65
TEST 10 – 1 000PPM 3630 WITH SNF CHOKE SYSTEM	66
Job Event Log Test 10	66
Pump chart – Test 10	68
Polymer sample analysis – Test 10	69
TEST 11 – 2 000 PPM 3630 AND 1 000 PPM AN125 WITH SNF CHOKE SYSTEM (CHOKE 3)	74
Job Event Log Test 11	74
Pump chart – Test 11a	76
TEST 11 2000 PPM STANDARD POLYMER SNF CHOKE	76
Pump chart – Test 11b	77
Polymer sample analysis – Test 11	78
Test $12 - 1\ 000$ PPM standard Polymer through 3 fixed chokes (1^{st} round)	83
Job Event Log – Test 12	83
Pump chart – Test 12	84
Test $13 - 1000$ PPM standard Polymer through 3 fixed choke (2^{ND} round control test)	85
Job Event Log Test 13	85
Pump chart – Test 13	86
Polymer sample analysis – Tests 12 and 13	87
POLYMER SAMPLES PH MEASUREMENTS.	89
POLYMER DEGRADATION – SUMMARY	91
CHEMICAL WASTE HANDLING	94

Executive summary

A large scale polymer degradation test was this autumn successfully performed by Halliburton at the IRIS test facilities in Stavanger. The test was part of research on IOR within the National IOR research Centre of Norway.

Polymer flooding is one of the more promising EOR methods. The most frequently used EOR polymers are the high molecular weight HPAM based polymers which however are known to be sensitive to shear degradation. It is therefore critical to be able to quantify the extent of degradation these polymers may undergo, under realistic conditions. It is also highly desirable to investigate any mitigation actions that may potentially minimize degradation.

The test program included two different polymers; high molecular weight HPAM polymer (FP 3630 supplied by SNF) which is regarded as the reference EOR polymer and a low molecular weight AMPS co-polymer (AN125, also supplied by SNF). AN125 was considered, from previous work, to be less shear sensitive. The polymers were tested in following four different choke valves:

- 1. Halliburton Standard adjustable choke valve, Type CH2M choke. (Choke 1)
- 2. Matek choke valve type 3254-7 (Choke 2)
- 3. SNF Linear pressure reducer, LPR, (Choke 3)

Tests were also performed on Halliburton Fixed choke valve - Orifice with fixed ID of 20/64" (Choke 4) and 24/64" (Choke 5). Prior to testing the general understanding was that the SNF Linear pressure reducer, LPR, which consists of a long coiled tube would be superior to the other choke types. Further on, it was assumed that the low molecular weight AN125 polymer would behave better than the high molecular weight 3630polymer.

As expected, test results with Choke 3 and polymer 3630 at 40 bar pressure drop over 400-600 meter showed viscosity loss of only 6.6%. The viscosity loss from a corresponding test with Choke 1 was 76%.

The Matek choke (Choke 2) was found to perform slightly worse than Choke type 1. The Matek choke degraded the 1000 ppm 3630 polymer 82% while Choke 1 degraded the same polymer to 76%. For 1000 ppm AN125 and Matek choke, the degradation was 73%. The corresponding test with Choke 1 resulted in 69% degradation.

The effect of the polymer concentration on polymer degradation was evident. In Choke 1, the 3630 polymer was degraded by 76% at concentration of 1000 ppm and by 66% at 2000 ppm. The AN125 polymer was degraded 69% and 64%, respectively. However, when increasing the 3630 polymer concentration to 10000 ppm, the polymer degradation was reduced to less than 10%.

Tests, with multiple choke valves rigged in series to evaluate the effect of stepwise choking revealed that multiple small step choking is better than a single large step choking. In one test using three serially mounted chokes at differential pressure of 15, 15 and 25 bar resulted in similar degradation as in a single choke test with 55 bar pressure drop. However, when the differential pressures were lowered to 5, 5, and 5 bar for each choke, the total degradation was significantly better than the degradation from a single choke test with 15 bar pressure drop. We conclude that standard choke valves at differential pressure up to 50 bar will severely degrade synthetic polymers. This test addressed the following three possible methods to reduce the polymer degradation:

- Reduce the pressure gradient by increasing the choke length, e.g. LPR choke.
- Choke polymer concentrate and brine separately and perform dilution of polymer after chokes.
- Use of multiple chokes with each choke set at sufficiently lower differential pressure that is below critical level.

In addition, the knowledge acquired from this test may contribute to improvements of commercial choke valves.

Polymer samples prepared at large scale and laboratory scale revealed same rheological properties. Some of the large scale mixing tests however suffered from poor water quality, which revealed poor filterability in the filtration tests. With acceptable water quality, the filterability of the two polymers were excellent and similar to the laboratory scale filterability tests. For determination of polymer viscosity and polymer degradation, the poor water quality was not critical, but will be critical in porous media flood experiments (which is planned in a later phase of this project).

Filtration rate or screen factor was found to depend strongly on the viscosity and thereby on the degradation. Upscaled to field conditions this means that some degradation will improve the injectivity.

For all polymer samples pH was measured and was found to be relatively constant.

Background

The main purpose of the large scale yard test was to determine the potential damage to polymers when pumped through a choke valve. Therefore, a more specific large scale test was planned and carried out using two variants of polyacrylamide polymers and four commercially available choke valves, with the objective of determining polymer degradation at constant rates and different pressure drops.

Several polymer systems are in use by the oil and gas industry for enhanced oil recovery purpose. In general, the polymer systems are prepared by mixing polymer powder either in sea water or fresh water to higher concentration polymeric fluid. Then the concentrate is injected on the fly into the water injection line and diluted to the desired final concentration. Finally the diluted polymer solution is injected into the formation.

One major challenge in using synthetic polymer systems, particularly in multiple subsea wells is the risk of shear degradation caused by pumps, lines, valves and chokes. Polymer degradation lowers the polymer viscosity of the injected fluid and this obviously reduce the potential to enhance the oil recovery. In order to avoid shear degradation, suppliers have made some recommendations on the selection of pumping equipment, size and geometry of flow lines etc. Although suppliers do provide polymer specification and some general guide lines on how to avoid degradation, there are still some important questions to be answered.

Injecting polymers in multiple wells, in a subsea environment requires the use of chokes on each well, in order to control pressure and injection rates. However, some chemical suppliers categorically reject the use of choke valves at any point between high pressure pumps and the formation. This means, unless a separate, dedicated polymer injection line is constructed for each well, polymer based Improved Oil Recovery cannot be realized in multiple subsea wells.

Although several researchers have been engaged in studying polymer degradation at small and medium scale, the only large scale polymer shear test we are aware of is a test performed at IRIS facility by Statoil, Halliburton, and IRIS in 2008. This test was performed by circulating a so called Linked Polymer System (LPS), a polyacrylamide polymer solution with a cross linker, via a choke valve, at different rates and varying choke closure percentage. Samples were taken both before and after the choke and a filtration tests as well as rheological measurement were performed. The observation from this test gave no significant reduction in viscosity takes place before choke was set at 90 % closed position. However, since the shear test was only one small part of the large scale testing, it lacked depth and focus to produce conclusive and useful data.

The national IOR Research Center of Norway decided to plan and implement a realistic large scale test to determine the degree of polymer degradation as a result of mechanical shear.

The operation required the contribution from Halliburton, IRIS, Polymer suppliers (SNF), and Choke supplier (Matek).

Preparation & Test set up

Preparation

An operational plan was developed and circulated to all members of the technical committee, long before operation start. This operation plan was revised several times based on input from all participants. A pre operation workshop was held on 25-08-15 at Halliburton's Tananger facility in order to go through the operation plan and make necessary improvements. The workshop was attended by all project participants. A separate Procedure for QC and laboratory testing was developed by IRIS and SNF. Finally the operation plan and the QC procedure were distributed to all active participants as well as to the technical committee of the IOR center.

Events prior to testing:

- 1) 24.09.15 Halliburton started to mobilize equipment to test site
- 28.09.15. A detail pre-job operational procedure and safety review took place at IRIS with IRIS research team, IRIS site rep and all key operational personnel from Halliburton. Several other smaller meetings also took place while the operation was going.
- 3) 01.10.15 SNF delivered polymer
- 4) 05.10.15 Rig up was completed according to the rig up drawing shown in Figure 1.
- 5) 05.10.15 Pressure testing completed
- 6) 06.10.15. The water source was the firefighting system at the IRIS facility. Apparently, the system has not been used for a long time and a lot of rust has been accumulated in the pipe line. The water was far from clean and very brownish. Therefore, the water was allowed to flow for a long time, until it was visually clean. At this point a laboratory test, using Iron kit was performed to determine the iron content. The iron content was well below 10 ppm hence acceptable.
- 7) 06.10.15 Based on the iron content measurement the use of Citric acid to clean lines was abandoned.
- 8) 06.10.15 Based on discussion with SNF, a decision was taken to make changes to pumping schedule. The volume of the final solution to be pumped for each stage was increased thereby increasing the pumping time. 7.5 min pumping time was necessary for the online viscometer to measure the viscosity. The increase in volume for each stage did not increase the total polymer waste volume as Matek communicated that one choke valve with one insert will be delivered instead of two exchangeable inserts.
- 9) 07.10.15. Matek delivered only one choke with one insert. The size of the valve was not according to plan. Therefore the pumping rate for the specific test had to be reduced.
- 10) 07.10.15 Operational procedure was updated and distributed accommodating the changes.

Experimental Test Set Up

Test fluids

The following fluids were made available for the test

- 1) Ulandhaug Tap water from supplied by IRIS
- 2) Citric acid
- 3) Polyacrylamide polymer requirement from SNF
 - a. 22 m3 of 15 000ppm standard polymer (FP 3630).
 - b. 22 m3 of 15 000ppm enhanced polymer (AN125).
 - c. Expected waste at the end of project 163 m3

Equipment

The following essential equipment was rigged up at IRIS facility for the test

- 1) HP pump
- 2) Centrifugal pump (for water supply)
- 3) Low pressure Positive displacement pump (for polymer feed)
- 4) Positive displacement pump (progressive cavity pump)
- 5) Polymer mixing equipment
- 6) Choke valves from different suppliers
- 7) LP hoses, HP lines, manifold, etc.
- 8) Data logging cabin
- 9) Pressure gauges, flow meters, temp gauges.
- 10) Storage Tanks
- 11) Slope tanks
- 12) SNF supplied online viscometer
- 13) SNF supplied sampling devices, one for before the choke and one for after
- 14) Matek supplied choke valve
- 15) Halliburton supplied choke valve
- 16) SNF supplied LPV choke
- 17) Halliburton supplied fixed orifice chokes

For Major equipment, the equipment rig up is shown in Figures 1

Actual Large Scale Test

Quality control

Prior to the large scale test a laboratory test was performed on samples taken from 15000 ppm mother solutions supplied to the project. The mother solutions were diluted to 1000, 2000 and 10000 ppm and viscosity was compared with solutions made from powder in the laboratory. Further, all tests were repeated on samples collected from storage tanks as well as sampling bottles installed before and after each choke valve, during the shear degradation test. The laboratory measurements were comprised of physical observation, pH control, viscosity measurement and filter ratio tests.

Mixing

The polymer solution was prepared first by preparing 0.5 % NaCl brine in the compartment 1 of the Mix Tank C1 (Figure 3). The required amount of brine was thereafter transferred to compartment 2 of Mix tank C1 (Figure 3) via an internal mixer (Figure 2) while the exact volume of the mother solution was injected before the internal mixer. The internal mixer was designed to assure a uniform polymer - water mix. The agitator in the compartment 2 of Mix tank C1 was kept running slowly (maximum tip velocity of 3 m/s), until solution was uniformly mixed. The formulation of each polymer solution is provided in Table 1.

Figure 2 – Mother solution injection point and Internal mixer

Figure 3 – Mix Tank C1

The Mother solution of the polymer was stored in Tank B1 and B2. These tanks were connected to a low shear displacement pump.

Standard Poly	ymer										
Mother solution	Final solution	Volume of Final solution required for one choke in combination with one type of polymer	Volume ratio mother solution/final solution (m2 (m2)	Volume ratio 0,5 % NaCl brine/final solution (m2(m2)	Volume of 0,5 % NaCl brine	Volume of Mother solution	Pumping rate of 0,5% NaCl brine During mixing (liteor/mix)	Pumping rate of Mother solution during mixing (liter (mix)	Nrofchakas	Type of	Total Consumption of 15000 ppm polymer colution (m2)
(ppm)	(ppm)	(iiter)	(115/115)	(1115/1115)	required (inter)	required (inter)			INFOI CHOKES	polymers	solution (ms)
15 000,00	1 000,00	12 000,00	0,07	0,93	11200,00	800,00	700,00	50,00	3	1	2,40
15 000,00	2 000,00	12 000,00	0,13	0,87	10400,00	1600,00	650,00	100,00	3	1	4,80
15 000,00	10 000,00	12 000,00	0,67	0,33	4000,00	8000,00	150,00	300,00	1	1	8,00
Sum		36 000,00									15,20

Table 1	Polymer	mixing	- volumes	and	concentrations.
---------	---------	--------	-----------	-----	-----------------

Enhanced Pol	ymer											
Volume of Final solution required for one choke in Volume ratio 0,5 combination % NaCl with one type Volume ratio mother brine/final			Volume of 0,5 %	Volume of	Pumping rate of 0,5 % NaCl brine	Pumping rate of Mother solution			Total Consumption of			
Mother solution	Final solution	of polymer	solution/final solution	solution	NaCl brine	Mother solution	During mixing	during mixing		Type of	15000 ppm polymer	Total vol of final
(ppm)	(ppm)	(liter)	(m3/m3)	(m3/m3)	required (liter)	required (liter)	(liter/min)	(liter/min)	Nr of chokes	polymers	solution (m3)	solution (m3)
15 000,00	1 000,00	12 000,00	0,07	0,93	11200,000	800,000	700,000	50,00	3	1	2,40	36
15 000,00	2 000,00	12 000,00	0,13	0,87	10400,000	1600,000	650,000	100,00	3	1	4,80	36
15 000,00	10 000,00	0,00	0,67	0,33	0,000	0,000			0	0	0,00	0
Sum		24 000.00									7.20	72.00

Figure 4 shows viscosity of the received 3630 sample diluted to 1000, 2000 and 10000 ppm and compared with polymer viscosity on samples prepared and diluted at laboratory scale.

Figure 4 – Viscosity of 3630 polymer measured on Anton Paar Physica MCR 301 Rheometer at 20°C.

As can be seen from Figure 4, the large scale and lab scale mixing and dilution provided samples with the same rheological properties.

Similar observation were made for the AN 125 polymer, see Figure 5. It should however be noted that the diluted tank sample revealed somewhat higher viscosity than the samples prepared in the laboratory.

Figure 5 – Viscosity of AN125 polymer measured on Anton Paar Physica MCR 301 Rheometer at 20°C.

Polymer shear test

After the final polymer solution was mixed according to specification and found to be satisfactory, the next step was to perform the polymer shear test.

This time, the final solution stored in Mix tank C1, was delivered to the HP pump using the positive displacement pump (Figure 6) and then pumped with a Triplex High Pressure pump (Figure 7) through the choke valve into a holding tank. Pumping rate, pressure drop across the choke valve and temperature was recorded continuously. In addition, an online viscometer from SNF was installed. This equipment was disconnected after the first shear test due to malfunctioning. However, the results from this test proved that the online viscometer was able to reproduce the degradation derived from bulk rheology measurements.

Figure 6 – Positive displacement polymer feed pump

Figure 7 – High pressure pump

This polymer shear degradation process was repeated several times with different types of choke valves at different pressure drops. Although the pumping rates and the pressure drops provided in Table 2 were to be used for all choke valves, pumping rate had to be reduced significantly for the choke valve provided by Matek. As mentioned earlier, the specific valve was found not to be appropriate for 400 lpm pumping rate. For SNF choke valve, rate was increased up to 600 lpm in order to reach the desired pressure drop. Otherwise, the differential pressure in Table 2 were applied. The actual differential pressures were calculated from the pressure gauge measurements and are reported separately for each of the tests.

The pressure data was recorded continuously via pressure transducers installed before and after the choke valves. The flow rates were also recorded continuously. According to specific request made by Matek, a

backpressure of 50 bar was applied on the Choke 2. The same backpressure was applied for the standard choke.

Prior to the each polymer shear test, test was performed using only water. This test was designed to adjust the choke opening for the desired pressure drop, ahead of the actual test.

Pumping time	7,5	min at each ra	te		
		Pressure			
	Pumping	drop			
Test nr	Pate (Inm)	across	Volume (liter)		
	Rate (ipili)	choke			
		(Bar)			
1	400,00	10,00	3 000,00		
2	400,00	20,00	3 000,00		
3	400,00	30,00	3 000,00		
4	400,00	50,00	3 000,00		
SUM			12 000,00		

Table 2 – Polymer shear test plan for each specific polymer solution/choke type combinations

Sampling

Samples were collected both before and after the choke valve. A sampling device from SNF was used according to instructions by SNF, see Figure 8. In this procedure:

Valve 1, 2 and 3 were opened slowly to full-open position. Next, Valve 4 was first opened sufficiently to expel gas. Then Valve 4 was opened more to allow a slow and steady fluid stream for some time in order to purge all flow lines and fittings. Finally, sample was collected according to the attached Sampling procedure QC-PR-140-01 and delivered to the IRIS laboratory for analysis. Further, viscosity was measured and polymer degradation across the choke valve was reported.

Figure 8 – Sampling apparatus from SNF.

<u>Results</u>

Table 3 below shows the test matrix.

Table 3 – Test Matrix.

Test	Test conditions
1	1 000ppm 3630 with Halliburton standard adjustable choke (Choke 1)
2	2 000ppm 3630 with Halliburton standard adjustable choke (Choke 1)
3	10 000ppm 3630 with Halliburton standard adjustable choke (Choke 1)
4	1 000 ppm AN125 with Halliburton standard adjustable choke (Choke 1)
5	2 000 ppm AN125with Halliburton standard adjustable choke (Choke 1)
6	1 000 ppm AN125with Matek choke (Choke 2)
7	2 000 ppm AN125with Matek choke (Choke 2)
8	1 000 ppm 3630 with Matek choke (Choke 2)
9	1 000 ppm 3630 with fixed Halliburton chokes 20/64" and 24/64"
10	1 000ppm 3630with SNF choke system (Choke 3)
11	2 000 ppm AN125 and 1 000 ppm 3630 with SNF choke system (Choke 3)
12	1 000 ppm 3630 through 3 fixed chokes (1st round)
13	1 000 ppm 3630 through 3 fixed choke (2nd round control test)

These tests are reported separately, including the following:

- Operation event log including pressure, rate and temperature plots with brief notes
- Pump chart
- Polymer sample viscosity
- Polymer degradation
- Filter ratio and screen factor

Finally, the different test results are summarized and discussed.

Test 1 – 1 000ppm 3630 with Halliburton standard adjustable choke (Choke 1)

Job Event Log Test 1

Start Time	06-Oct-15 10:33:55	
End Time	06-Oct-15 12:55:44	
Volume	12.211	m ³

Stage Numbe	Event Numbe	Time ucts	Descriptio n	Comment	Treating Pressur	Backsid e	Clea n	Slurr y
r	r				e bar	Pressur e bar	Rate L/mi n	°C ℃
	1	06-Oct- 15 10:33:5 3	Start Job	Starting Job	0.0	0.0	0	-
	2	10:35:0 7	Other	Transferring polymer to 4.5m3 tank	2.2	1.5	-1	14.4
	3	10:44:0 8	Other	Finish transferring polymer to 4.5m3 tank	2.1	1.5	-1	14.5
	4	10:45:0 0	Other	Start mixing polymer/Na Cl	2.1	1.6	-1	14.5
	5	11:09:0 7	Other	Finish mixing	2.2	1.5	-1	14.8
1		12:16:5 4	Stage 1	NEXT STAGE	2.2	1.4	-1	17.0
		12:16:5 5	Start Averaging	Start Avg Trt 1	2.2	1.3	-1	16.9
	6	12:19:5 2	Other	Start test with 60 bar	68.2	48.9	394	16.7
	7	12:26:1 0	Other	Adjust pressure to 70 bar	68.5	51.5	402	16.4
	8	12:33:1 5	Other	Adjust pressure to 80 bar	73.3	46.6	397	15.9
	9	12:40:2 0	Other	Adjust pressure to 100 bar	82.8	47.9	402	15.5
	10	12:47:5 4	Other	Reduce pressure on choke	77.8	46.3	397	15.4
	11	12:49:2 7	Other	Stop pumping	8.4	6.8	288	15.2
		12:55:4 4	End Averaging	End Avg Trt 1	2.3	1.4	-1	15.4
	12	12:55:4 6	End Job	Ending Job	2.3	1.4	-1	15.4

Pump chart – Test 1

Polymer sample analysis – Test 1

Polymer samples were taken at the sampling points before and after choke. The viscosity of the samples are in Table 4 reported for each of the actual differential choke pressures. Viscosity was measured and the viscosity data for Test – 1 is presented and discussed below. Viscosity was measured on Anton Paar Physica MCR301 rheometer using cone and plate geometry at temperature of 20°C and as shear rate scan from 0.01 to 500 s⁻¹.

Polymer degradation is defined in two different ways, relative to tank viscosity, η_{DT} , or relative to sampling point before choke, η_{DC} , both as the viscosity difference at shear rate of 6.6 s⁻¹, i.e.,

 $\eta_{DT} = \frac{\eta_{Tank} - \eta_{after \ choke}}{\eta_{Tank} - \eta_{brine}}$ $\eta_{DC} = \frac{\eta_{before \ choke} - \eta_{after \ choke}}{\eta_{\eta_{before \ choke}} - \eta_{brine}}$

Table 4 Polymer viscosity – Test 1.								
	Diluted	Tank	$\Delta P =$	ΔP =				
	in lab		15	15	23	35	53	53
			Bar	Bar	Bar	Bar	Bar	Bar
			Before	After	After	After	After	Before
Polymer	3630	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	1000
Choke type		1	1	1	1	1	1	1
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate								
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	11.9	10.4	8.33	5.68	5.4	5.18	4.8	8.33
291	11.4	10.9	8	6.34	6	5.68	5.12	7.82
169	11.9	10.8	9.12	7.4	6.92	6.45	5.66	8.88
98.7	11.3	10.8	10.9	8.71	7.98	7.3	6.22	10.6
57.4	13.2	13.3	13.2	10.2	9.15	8.19	6.75	12.8
33.4	16.2	16.3	16.1	11.9	10.3	9.01	7.18	15.6
19.5	19.9	20.1	19.7	13.7	11.4	9.71	7.51	19.1
11.3	24.5	24.7	24.2	15.3	12.3	10.2	7.68	23.4
6.6	30.2	30.6	29	16.8	13	10.6	7.84	28.7
3.84	37.1	37.8	35.2	17.7	13.4	10.7	7.77	34.7
2.24	45.3	46.4	42.1	18.4	13.7	10.8	7.72	41.3
1.3	54.5	56.2	49.3	18.8	13.9	10.8	7.75	48.1
0.758	64.2	66.5	55.8	19	13.9	10.9	7.69	54.1
0.441	73.6	76.7	61	19.2	14.1	11	7.77	58.8
0.257	82.5	86	65.4	19.5	14.1	11	7.9	62.4
0.15	90.4	95.5	67.8	19.6	14.2	11.2	7.75	64.6
0.0871	99	105	70.3	18.1	14.4	12.1	8.12	66.5
0.0507	103	112	72.9	22.8	14.5	13.1	9.24	68.8
0.0295	109	122	74.7	24.6	18.3	14.5	9.41	70.7
0.0172	113	138	77.3	26.9	21	16.8	11.3	74.3
0.01	115	153	82.2	40	21.2	22.5	15.4	78.9

Figure 9 – Polymer viscosity – Test 1.

Table 5	Polymer	degradation	– Test 1.
---------	---------	-------------	-----------

						Viscosity	Degradation	Degradation
	Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke
_				ppm	Bar	mPas	%	%
	1	1	3630	1000	Tank	30.6	0	-
		1	3630	1000	0	29	5.4	0.0
		1	3630	1000	15	16.8	46.6	43.6
		1	3630	1000	23	13	59.5	57.1
		1	3630	1000	35	10.6	67.6	65.7
		1	3630	1000	53	7.84	76.9	75.6

As seen from Table 5 above, the polymer is severely degraded even at 15 bar differential pressure across the choke valve. At 53 bar differential pressure the polymer is degraded to more than 70%.

Filter ratio tests were performed by filtration of the polymer samples through a 5 μ m Millipore filter, type TMTP, at constant pressure of 2 bar. Filter ratio, FR is defined as the following:

$$FR = \frac{t_{300} - t_{200}}{t_{200} - t_{100}}$$

Where t_i is the time to filter i gram of solution. The total time to filter 300 gram solution is also reported, and the Screen factor, SF defined as the ratio between filtration time of polymer solution and brine. The filtration time for 0.5wt% NaCl was constant and close to 30 s for all the tests.

The shear rate through the filter was calculated from the following equation:

$$\dot{\gamma} = \frac{4\alpha v}{r} = \frac{4\alpha q}{\varphi \pi R^2 r}$$

Here q is the flow rate, φ is filter porosity ($\varphi = 0.125$). *R* is the effective filter radius (R = 2.0 cm) and *r* is pore size radius ($r = 5/2 \mu$ m).

				Choke 1	Choke 1	Choke 1	
				CHOKE I	CHOKE I	CHOKE I	
Sample	ΔP , bar	Polymer	Conc, ppm	FR	Time, s	Shear rate	SF
Diluted lab		3630	1000	1.04	1483	5.16E+03	
Brine lab		NaCl	5000		30		1.00
Tank		3630	1000	4.695	5291	1.45E+03	176.37
Brine Tank		NaCl	5000	1.2	33	2.32E+05	1.10
Before choke	15	3630	1000	3.33	2349	3.26E+03	78.30
Before choke	23	3630	1000	-	-	-	
Before choke	35	3630	1000	-	-	-	
Before choke	53	3630	1000	-	-	-	
After choke	15	3630	1000	3.879	929	8.24E+03	30.97
After choke	23	3630	1000	2.762	458	1.67E+04	15.27
After choke	35	3630	1000	2.403	310	2.47E+04	10.33
After choke	53	3630	1000	2.926	246	3.11E+04	8.20

Table 6 Polymer filtration – Test 1

Table 7 Forginer viscosity after inflation – Test 1.							
	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate
	Diluted	Tank	$\Delta P =$				
	in lab		15	15	23	35	55
			Bar	Bar	Bar	Bar	Bar
			Before	After	After	After	After
Polymer	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000
Choke type		1	1	1	1	1	1
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate							
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	10.5	8.71	7.95	5.61	5.34	5.11	4.7
291	10.9	9.02	7.48	6.24	5.91	5.59	5
169	11.2	8.44	8.72	7.27	6.79	6.32	5.5
98.7	10.6	9.76	10.4	8.51	7.8	7.12	6.02
57.4	13	11.8	12.5	9.96	8.89	7.95	6.51
33.4	15.8	14.2	15.2	11.5	9.95	8.69	6.89
19.5	19.4	17.2	18.5	13.1	10.9	9.31	7.18
11.3	23.8	20.8	22.6	14.5	11.7	9.74	7.33
6.6	29.2	25.3	27.4	15.8	12.3	10	7.43
3.84	35.7	30.4	32.8	16.6	12.5	10.1	7.42
2.24	43.4	36.2	38.5	17.1	12.7	10.2	7.4
1.3	51.9	42.2	44.2	17.5	12.9	10.3	7.47
0.758	60.5	47.9	48.9	17.6	12.9	10.4	7.48
0.441	68.5	52.8	52.6	17.7	13.1	10.4	7.62
0.257	76.2	56.9	55.2	17.9	13.4	10.6	7.74
0.15	82.2	59.5	56.8	17.8	13.5	10.4	7.87
0.0871	88.1	62.1	57.7	18	14.3	11	8.28
0.0507	92.7	63.1	59.6	19.2	15.3	11.8	9.6
0.0295	97.1	64.6	61	19.5	17.1	11.4	9.16
0.0172	99.6	65	61.3	21.7	22.4	12.9	11.7
0.01	105	64.4	62.5	28.1	30.2	19.7	14.9

Table 7 Polymer viscosity after filtration – Test 1.

The only difference between the viscosity data shown in Table 7 and Table 4 is that the polymer samples reported in Table 4 have been filtered through a 5 mm filter at shear rates as reported in Table 6. From Figure 10 it is seen that the viscosity before and after filtration is approximately the same. Shear rates through the filter of 1.4E+03 (Tank) and 3.1E+04 (53 bar through choke) did not further degrade the polymer. The reason the tank viscosity was not degraded in the filter ratio test was the poor tank water quality in this test (as indicated by FR = 4.7).

Figure 10 – Polymer viscosity, comparison of filtered and non-filtered – Test 1.

As can be seen from Figure 10, no significant polymer degradation occurred during filtration of the polymer samples. There are two reasons for this:

- 1. In this test, the makeup water had poor filterability, which caused poor polymer filterability, FR > 4. This lowered the flow rate and corresponding shear rate through the filter. The degradation of the tank sample at filter shear rate of $1.5E+03 \text{ s}^{-1}$ was marginal.
- 2. For the degraded polymer the filter shear rate increased, but since the polymer was already severely degraded through the choke, no further degradation took place in the filter at shear rates of approximately 2E+04 s⁻¹.

Test 2 – 2 000ppm 3630 with Halliburton Standard adjustable choke (Choke 1)

Job Event Log Test 2

Start Time	06-Oct-15 14:33:54	
End Time	06-Oct-15 15:12:09	
Volume	12.370	m³

Stage Numbe r	Event Numbe r	Time ucts	Descriptio n	Commen t	Treating Pressur e bar	Backsid e Pressur e bar	Clea n Rate L/mi n	Slurr y Temp °C
	1	06-Oct- 15 14:33:5 2	Start Job	Starting Job	0.0	0.0	0	
1		14:35:1 1	Stage 1	NEXT STAGE	2.1	1.5	-1	14.4
		14:35:1 2	Start Averaging	Start Avg Trt 1	2.1	1.5	-1	14.4
	2	14:40:0 2	Other	Start pumping @ 60 bar	24.7	15.2	402	15.9
	3	14:48:1 6	Other	Increase pressure to 70 bar	62.2	50.5	400	14.9
	4	14:55:2 1	Other	Increase pressure to 80 bar	74.2	47.0	397	15.1
	5	15:03:1 0	Other	Increase pressure to 100 bar	80.4	44.6	396	15.1
	6	15:09:2 1	Other	Stop pumping	29.4	10.6	338	15.1
		15:12:0 9	End Averaging	End Avg Trt 1	2.3	1.5	-1	14.6
	7	15:12:1 1	End Job	Ending Job	2.3	1.5	-1	14.6

Pump chart – Test 2

Polymer sample analysis – Test 2

		Table	8 Polymer	· viscositv	– Test 2.			
	Diluted	Tank	$\Delta P =$	ΔP =				
	in lab		9	9	24	35	53	53
			Bar	Bar	Bar	Bar	Bar	Bar
			Before	After	After	After	After	Before
Polymer	3630	3630	3630	3630	3630	3630	3630	3630
, Concentration, ppm	2000	2000	2000	2000	2000	2000	2000	2000
Choke type		1	1	1	1	1	1	1
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate	·	·	•					
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	23	18	15.3	11.8	10.2	9.73	9.32	14.9
291	18.9	18.6	16.3	13.6	12.4	11.8	11.2	15.9
169	23	20.9	17.3	16.9	15.3	14.4	13.5	17.2
98.7	23.2	22.9	22.2	21.4	19.1	17.7	16.2	22
57.4	29.2	30.6	28.4	27.3	24.1	21.6	19.2	28.2
33.4	39.1	40.3	36.8	35.3	30.2	26.1	22.3	36.5
19.5	51.6	53.2	48.2	46.2	37.6	30.9	24.9	47.6
11.3	68.3	70.8	63.6	60.9	46.1	35.8	27.2	62.7
6.6	91	94.9	84.4	80.6	55.2	40.3	29.1	83
3.84	122	128	112	106	64.1	44	30.5	110
2.24	163	172	148	138	72.1	46.8	31.4	144
1.3	216	229	193	177	78.7	48.8	32	187
0.758	281	301	246	219	83.3	50	32.3	237
0.441	358	385	303	261	86.2	50.6	32.7	291
0.257	447	482	364	301	87.8	51.2	33.1	346
0.15	548	591	425	335	89	51.5	33.7	402
0.0871	660	714	487	365	90.5	52.1	35.2	456
0.0507	785	848	546	390	92.5	54.5	37.7	507
0.0295	922	993	604	412	95.7	56.4	41.7	556
0.0172	1080	1150	661	428	102	58.8	49.5	602
0.01	1250	1330	716	449	109	66.9	65.2	650

Figure 11 – Polymer viscosity – Test 2

Table 9	Polymer	degradation	-Test	2
---------	---------	-------------	-------	---

	1			•	-		
					Viscosity	Degradation	Degradation
Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke
			ppm	Bar	mPas	%	%
2	1	3630	2000	Tank	94.9	0	-
	1	3630	2000	0	84.4	11.2	0.0
	1	3630	2000	9	80.6	15.2	4.6
	1	3630	2000	24	55.2	42.3	35.0
	1	3630	2000	35	40.3	58.1	52.9
	1	3630	2000	55	29.1	70.1	66.3
	•						

Test 3 - 10 000ppm 3630 with Halliburton standard adjustable choke (Choke 1)

Job Event Log Test 3

Start Time	07-Oct-15 14:14:36	
End Time	07-Oct-15 14:56:49	
Volume	11.906	т³

Stage Numb er	Event Numb er	Time ucts	Descripti on	Comme nt	Treatin g Pressu re bar	Backsi de Pressu re bar	Clea n Rate L/mi n	Stage Clean Vol Itr	Slurr y Tem p °C
	1	07-Oct- 15 14:14: 34	Start Job	Starting Job	2.1	1.5			
1		14:25: 49	Stage 1	NEXT STAGE	2.2	1.6			
		14:25: 50	Start Averaging	Start Avg Trt 1	2.1	1.6	-1	-3.232	9.4
	2	14:29: 13	Other	Pumping with 60 bar	61.4	47.5	406	1147.54 7	10.1
	3	14:34: 44	Other	Increase pressure to 70 bar	66.1	48.4	402	3309.35 9	10.2
	4	14:42: 19	Other	Increase pressure to 80 bar	74.6	45.4	402	6303.99 7	10.8
	5	14:50: 42	Other	Increase pressure to 100 bar	84.2	47.9	406	9598.40 9	11.4
	6	14:56: 06	Other	Stop pumping	4.0	2.1	28	11667.4 05	11.8
		14:56: 49	End Averaging	End Avg Trt 1	2.4	1.6	-1	11670.1 39	11.4
	7	14:56: 52	End Job	Ending Job	2.4	1.6	-1	11670.1 24	11.4

Pump chart – Test 3

Polymer sample analysis – Test 3 Table 10 Polymer viscosity – Test 3. $\Delta P =$ $\Delta P =$ $\Delta P =$ Diluted Tank $\Delta P =$ $\Delta P =$ $\Delta P =$ in lab Bar Bar Bar Bar Bar Bar Before After After After After Before Polymer Concentration, ppm Choke type Shear Viscosity Viscosity Viscosity Viscosity Viscosity Viscosity Viscosity rate 1/s mPas mPas mPas mPas mPas mPas mPas mPas 76.8 45.4 26.8 15.8 9.36 5.53 3.27 1.93 1.14 0.674 0.398 0.235 0.139 0.0821 0.0485 0.0286 0.0169 0.01

Figure 12 – Polymer viscosity – Test 3.

Table 11 Polymer degradation -	- Test	3
--------------------------------	--------	---

Test	Choke	Polymer	Conc	ΔP	Viscosity at 6.6 s^-1	Degradation Relative to Tank	Degradation before -after choke
			ppm	Bar	mPas	%	%
3	1	3630	10000	Tank	2190	0	-
	1	3630	10000	0	2000	8.7	0.0
	1	3630	10000	13	1980	9.6	1.0
	1	3630	10000	28	2030	7.3	-1.5
	1	3630	10000	34	1970	10.1	1.5
	1	3630	10000	54	1830	16.4	8.5

Table 12 P	olymer vis	cosity – T	est 3 (all s	amples in	Table 10 c	liluted to 1	1000 ppm)	•
	Diluted	Tank	$\Delta P =$					
	in lab		13	13	28	34	54	54
			Bar	Bar	Bar	Bar	Bar	Bar
			Before	After	After	After	After	Before
Polymer	3630	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	1000
Choke type		1	1	1	1	1	1	1
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate								
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	11	8.99	7.85	7.73	6.9	6.67	6.09	8.58
291	11.6	9.59	7.16	7.21	7.07	6.92	6.66	8.35
169	11.9	8.83	8.07	8.25	8.21	8.02	7.71	9.19
98.7	11.3	9.98	9.55	9.79	9.72	9.48	9.07	11.1
57.4	13.3	12.1	11.4	11.7	11.6	11.3	10.8	13.4
33.4	16.3	14.6	13.6	14.1	14	13.6	12.8	16.2
19.5	20	17.7	16.4	17.1	16.9	16.4	15.2	19.8
11.3	24.6	21.6	19.6	20.7	20.4	19.6	17.8	24.2
6.6	30.2	26.3	23.5	25	24.6	23.4	20.5	29.4
3.84	37.2	31.9	27.6	29.8	29	27.3	23.1	35.3
2.24	45.3	38.4	32	34.9	33.5	31.1	25.4	41.8
1.3	54.5	45.2	36.3	40	37.7	34.7	27.3	48.4
0.758	64	51.8	39.8	44.2	41	37.2	28.5	54.3
0.441	73.3	57.8	42.5	47.6	43.4	39	29.4	59.2
0.257	82.1	62.9	44.5	50	45	40.3	30.1	63.1
0.15	89.5	66.5	45.7	51.4	45.7	40.8	30.3	65.8
0.0871	96.5	70.2	47	53.2	46.2	41.1	31.4	68.5
0.0507	102	72.8	48.5	55.3	48.6	42.9	33.4	70.7
0.0295	109	75.1	50	59.3	49.3	44.7	35.9	73.5
0.0172	114	74.6	52.3	62	51.9	46.3	40.5	76.6
0.01	119	84.4	60.1	71.3	53.3	52	49.5	86

Figure 13 – Polymer viscosity of polymer samples diluted from 10000 to 1000 ppm – Test 3.

						Viscosity	Degradation	Degradation	
	Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke	
_				ppm	Bar	mPas	%	%	
	3	1	3630	1000	Tank	26.3	0	-	
		1	3630	1000	0	23.5	11.1	0.0	
		1	3630	1000	13	25	5.1	-6.7	
		1	3630	1000	28	24.6	6.7	-4.9	
		1	3630	1000	34	23.4	11.5	0.4	
		1	3630	1000	54	20.5	22.9	13.3	

	Table	13	Polymer	degradation -	Test 3.
--	-------	----	---------	---------------	---------

Test 4 – 1 000 ppm AN125 with Halliburton standard adjustable choke (Choke 1)

Job Event Log Test 4

Start Time	08-Oct-15 09:58:47	
End Time	08-Oct-15 10:40:28	
Volume	12.022	m³

Stage	Event	Time	Descriptio	Comment	Treating	Backsid	Clea	Slurr
Numbe	Numbe	ucts	n		Pressur	e	n	_ у
r	r				e	Pressur	Rate	Temp
					bar	е	L/mi	°C
						bar	n	
	1	08-Oct-	Start Job	Starting Job	0.0	0.0	0	
		15						
		09:58:4						
1		10:07:5	Stage 1	NEXT	2.3	1.6		10.4
		0	g	STAGE				
		10:07:5	Start	Start Avg	2.3	1.6		10.4
		1	Averaging	Trt 1				
	2	10:12:3	Other	Pumping @	57.0	46.7	401	10.9
		3	Others	60 bar	(2.4	40.0	405	11.1
	3	10:16:3 5	Other	Increase	63.4	49.2	405	11.1
		5		70 bar				
	4	10:23:0	Other	Increase	69.5	46.0	399	11.5
		5		pressure to				
				80 bar				
	5	10:24:4	Other	Increase on	80.5	47.5	401	11.5
		5		pressure				
				backpressur				
	6	10.30.1	Other	Increase	90.3	50.8	398	11 4
	U	7	o thoi	pressure to	70.0	00.0	070	
				100 bar				
	7	10:38:1	Other	Stop	77.2	35.5	355	11.4
		4		pumping				
		10:40:2	End	End Avg Trt	2.4	1.4		11.2
	0	8 10:40:2	Averaging	I Ending Joh	2.4	1 4		11.0
	ŏ	0		Ending Job	2.4	1.4		11.2
Pump chart – Test 4

Polymer sample analysis – Test 4

Table 14 Polymer viscosity – Test 4.									
	Tank	ΔP =	$\Delta P =$	ΔP =	ΔP =	ΔP =	$\Delta P =$		
		13	13	23	35	50	50		
		Bar	Bar	Bar	Bar	Bar	Bar		
		Before	After	After	After	After	Before		
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125		
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000		
Choke type	1	1	1	1	1	1	1		
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity		
rate	-	-		-	-	-			
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas		
500	7.93	7.05	6.31	5.77	5.55	5.23	7.09		
291	8.15	7.85	7.16	6.46	6.14	5.66	7.91		
169	9.51	9.13	8.4	7.42	6.96	6.27	9.21		
98.7	11.2	10.7	9.89	8.47	7.81	6.87	10.8		
57.4	13.3	12.7	11.6	9.55	8.64	7.4	12.8		
33.4	15.8	15.1	13.5	10.5	9.34	7.8	15.2		
19.5	18.7	17.8	15.4	11.4	9.87	8.08	18		
11.3	22.1	20.9	17.1	12	10.2	8.23	21.2		
6.6	26	24.3	18.5	12.4	10.4	8.28	24.7		
3.84	30	27.6	19.5	12.5	10.5	8.33	28.2		
2.24	34.1	30.7	20.2	12.6	10.6	8.37	31.5		
1.3	38	33.4	20.6	12.7	10.7	8.5	34.3		
0.758	41.1	35.3	21	12.8	10.8	8.56	36.3		
0.441	43.3	36.7	21.3	12.9	10.7	8.65	37.8		
0.257	45.2	37.6	22.2	13.2	11.1	8.75	38.7		
0.15	46.1	38.3	22.2	13.2	10.9	8.95	39.1		
0.0871	48.3	39.9	24.1	14.1	11.5	9.69	40.6		
0.0507	49.3	41.8	27.3	16.5	11.4	11.4	42.5		
0.0295	52.1	45.4	34.5	18.5	12.1	13.1	45.9		
0.0172	58	50.9	42.4	25.5	13.4	18.1	48.3		
0.01	67	63.5	59.9	33	15.7	24.2	56.7		

Figure 14 – Polymer viscosity – Test 4.

The deviation between lab-diluted and Tank sample viscosity was most likely due to the problem of proper cleaning of the tanks and flow lines after the previous polymer test -10000 ppm 3630 polymer. The high concentration polymer was difficult to wash out with brine and traces of 3630 polymer was then mixed into the AN 125 polymer. At shear rate of 6.6 s⁻¹, the tank sample viscosity was 26 mPas while the results in Figure 4 reports viscosity of 11.5 for the tank sample diluted to 1000 ppm in laboratory (which is close to the tank sample viscosity in Test 8).

For all other tests (at lower polymer viscosity), the clean up was regarded adequate.

	Table 15 Polymer degradation – Test 4.												
					Viscosity	Degradation	Degradation						
Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke						
			ppm	Bar	mPas	%	%						
4	1	AN125	1000	Tank	26	0.00	-						
	1	AN125	1000	0	24.7	5.20	0.00						
	1	AN125	1000	13	18.5	30.00	26.16						
	1	AN125	1000	23	12.4	54.40	51.90						
	1	AN125	1000	35	10.4	62.40	60.34						
	1	AN125	1000	50	8.28	70.88	69.28						

	Table to Polymer mitation – test 4.									
		Choke 1	Choke 1	Choke 1						
Sample	Δ P, bar	Polymer	Conc, ppm	FR	Time, s	Shear rate	SF			
Diluted lab		AN 125	1000	1.04	301	2.54E+04				
Brine lab		NaCl	5000	-	-	-				
Tank		AN 125	1000	1.20	689	1.11E+04	22.97			
Brine Tank		NaCl	5000	1.00	30	2.55E+05	1.00			
Before choke	13	AN 125	1000	1.13	444	1.72E+04	14.80			
Before choke	23	AN 125	1000	-	-	-	-			
Before choke	35	AN 125	1000	-	-	-	-			
Before choke	50	AN 125	1000	1.17	456	1.68E+04	15.20			
After choke	13	AN 125	1000	1.12	221	3.46E+04	7.37			
After choke	23	AN 125	1000	1.09	130	5.89E+04	4.33			
After choke	35	AN 125	1000	1.14	111	6.90E+04	3.70			
After choke	50	AN 125	1000	1.10	88	8.70E+04	2.93			

Table 16 Polymer filtration – Test 4

	Table 17 Polymer viscosity after filtration – Test 4.							
	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	
	Tank	$\Delta P =$	ΔP =					
		13	13	23	35	50	50	
		Bar	Bar	Bar	Bar	Bar	Bar	
		Before	After	After	After	After	Before	
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125	
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	
Choke type	1	1	1	1	1	1	1	
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	
rate								
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	
500	7.47	8.17	6.27	5.7	5.53	5.16		
291	8.01	9.4	7.12	6.37	6.11	5.57		
169	9.33	11.1	8.34	7.3	6.9	6.16		
98.7	11	13.2	9.79	8.3	7.72	6.73		
57.4	13	15.8	11.5	9.33	8.52	7.24		
33.4	15.4	18.8	13.2	10.3	9.18	7.61		
19.5	18.2	22.2	15	11	9.68	7.87		
11.3	21.5	26	16.6	11.6	9.99	7.99		
6.6	25	30	17.9	11.9	10.2	8.08		
3.84	28.7	33.7	18.6	12	10.2	8.01		
2.24	32.3	37	19.1	12.1	10.3	7.93		
1.3	35.6	39.8	19.4	12.2	10.3	8.05		
0.758	38.1	41.6	19.6	12.2	10.3	7.99		
0.441	39.9	42.7	19.8	12.4	10.5	8.2		
0.257	41.1	43.6	20.3	12.5	10.6	8.23		
0.15	41.1	43.7	20.4	12.5	10.6	8.39		
0.0871	42.1	44.2	20.9	13.4	11	9.19		
0.0507	42.6	45.4	23.6	14.1	12	10.3		
0.0295	45.5	47.4	26	15.7	12.9	11.2		
0.0172	47.6	49.3	31.9	18.8	15.4	15.5		
0.01	52	56.4	43.6	26.8	19.8	20.7		

As discussed earlier, the filtration at shear rates of $1.1E+04 \text{ s}^{-1}$ (Tank sample) and up to $8.7E+04 \text{ s}^{-1}$ (Choke samples) had minor impact on the degradation.

41

Figure 15 – Polymer viscosity, comparison of filtered and non-filtered – Test 4.

Test 5 – 2 000 ppm AN125 with Halliburton standard adjustable choke (Choke 1)

Job Event Log Test 5

Start Time	08-Oct-15 12:32:32	ucts
End Time	08-Oct-15 16:07:39	ucts
Volume	20.585	m³

Stage	Event	Time	Descriptio	Commen	Treating	Backsid	Clea	Slurr
Numbe	Numbe	ucts	n	t	Pressur	е	n	У
r	r				е	Pressur	Rate	Temp
					bar	е	L/mi	O°
						bar	n	
	1	08-Oct-	Start Job	Starting	0.0	0.0	0	
		15		Job				
		12:32:3						
-		0						
1		12:43:5	Stage 1	NEXT	2.3	1.6	-1	10.7
		8		STAGE		4 5		10 (
		12:43:5	Start	Start Avg	2.3	1.5	-1	10.6
	2	9	Averaging	Dumping	(2.2	A.	400	11.0
	2	12:47:2 g	Other	@ 60 bar	03.2	40.0	408	11.3
	3	12.20.3	Other		69.7	45.0	405	11 5
	5	5	Other	pressure	07.7	40.0	400	11.0
		_		to 70 bar				
	4	12:55:2	Other	Increase	77.8	49.2	403	11.3
		5		pressure				
				to 80 bar				
	5	13:02:5	Other	Increase	88.4	47.9	398	11.5
		8		pressure				
				to 100 bar				
	6	13:13:4	Other	Stop	7.8	2.4	175	11.5
		2		pumping				10.5
		16:07:3	End	End Avg	2.6	1.4	-0	12.0
	7	9	Averaging	Int 1	2.4	1.4		10.0
	/	16:07:4	End Job	Ending Job	2.6	1.4	-0	12.0
		2		1				

Pump chart – Test 5

Polymer sample analysis – Test 5

		Table 18 Polymer viscosity – Test 5.							
	Tank	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$		
		16	16	25	34	53	53		
		Bar	Bar	Bar	Bar	Bar	Bar		
		Before	After	After	After	After	Before		
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125		
Concentration, ppm	2000	2000	2000	2000	2000	2000	2000		
Choke type	1	1	1	1	1	1	1		
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity		
rate									
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas		
500	9.87	9.44	8.23	7.93	7.78	7.39	9.44		
291	11.4	11	9.7	9.31	9.07	8.46	11		
169	13.6	13.1	11.6	11	10.6	9.71	13.1		
98.7	16.4	15.7	13.9	12.9	12.3	11	15.7		
57.4	19.7	18.9	16.5	15	14	12.1	18.9		
33.4	23.6	22.7	19.4	17	15.5	13	22.7		
19.5	28.2	27.1	22.2	18.7	16.8	13.7	27.1		
11.3	33.5	32.2	24.8	20	17.7	14.1	32.2		
6.6	39.4	37.7	26.9	20.9	18.2	14.3	37.7		
3.84	45.5	43.2	28.4	21.4	18.4	14.3	43.1		
2.24	51.6	48.5	29.3	21.6	18.6	14.4	48.4		
1.3	57.4	53.2	29.9	21.9	18.6	14.5	53		
0.758	62.3	56.7	30.2	22	18.7	14.6	56.4		
0.441	66.2	59.2	30.5	22.1	18.7	14.8	58.9		
0.257	69.3	61	31	22.3	18.7	15.1	60.7		
0.15	71.4	61.9	31	22.1	18.5	15.2	61.6		
0.0871	73.3	62.1	32	22.6	19.2	16.1	63.1		
0.0507	76.1	64	33.2	24.9	19.6	17.8	65.2		
0.0295	79.2	67.8	35.6	26.6	20	16.1	68.8		
0.0172	82.6	66.1	39.3	30.3	18.9	22.6	70.1		
0.01	89.3	71.6	45.2	36.3	23.5	31.9	80		

Figure 16 – Polymer viscosity – Test 5.

			I uolo I	/ I oryme	a degradation	10505.	
					Viscosity	Degradation	Degradation
Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke
			ppm	Bar	mPas	%	%
5	1	AN125	2000	Tank	39.4	0.00	-
	1	AN125	2000	0	37.7	4.43	0.00
	1	AN125	2000	16	26.9	32.55	29.43
	1	AN125	2000	25	20.9	48.18	45.78
	1	AN125	2000	34	18.2	55.21	53.13
	1	AN125	2000	53	14.3	65.36	63.76

Table 19 Polymer degradation – Test 5.

Test 6 - 1 000 ppm AN125 with Matek choke (Choke 2)

Job Event Log Test 6

Start Time	13-Oct-15 09:25:24	
End Time	13-Oct-15 12:26:03	
Clean Volume	6.676	m³

Stage	Event	Time	Descriptio	Commen	Treating	Backsid	Clea	Slurr
Numbe	Numbe	ucts	n	t	Pressur	e	n Dete	у
r	r				e	Pressur	Rate	remp
					Dai	e har	L/IIII n	C
	1	13-Oct-	Start Job	Starting	0.0	0.0	0	
		15		Job	0.0	0.0	0	
		09:25:2						
1		2	Stage 1		0.5	1.4		6.0
I		09.51.2	Stage 1	STAGE	0.5	1.0		0.2
		09:51:2	Start	Start Avg	0.5	1.5		6.2
		1	Averaging	Trt 1				
	2	09:59:5	Other	Pumping	56.9	46.1	70	6.6
		0		45% open on Matek				
				choke				
				first test				
				60 bar dif.				
	2	10.11.5	Othor	pressure	72.0	16.0	72	7.2
	5	3	Other	pressure	73.7	40.0	13	7.5
		-		to 70bar				
				39%				
				opening				
				choke				
	4	10:17:5	Other	Increase	86.5	46.3	70	7.7
		0		pressure				
				to 80 bar				
				37% opening				
				on Matek				
				choke				
	5	10:32:2	Other	Increase	106.1	50.7	71	8.6
		3		to 100 bar				
				33%				
				opening				
				on Matek				
	6	10.44.5	Other	Choke	61.0	54.0	75	0.2
	0	6	Other	Matek	01.7	54.7	75	7.2
		-		choke				
		40.5.		100%				
	7	10:56:1 0	Other	Flushing	1.5	1.5	88	9.7
		12:26:0 3	End Averaging	End Avg Trt 1	0.8	1.5	-1	12.1
	8	12:26:0	End Job	Ending Job	0.8	1.5	-1	12.1
		5						

Pump chart – Test 6

Polymer sample analysis – Test 6

Table 20 Polymer viscosity – Test 6.									
	Tank	$\Delta P =$	100%	100%					
		13	13	32	43	53	53	Open	Open
		Bar	Bar	Bar	Bar	Bar	Bar		
		Before	After	After	After	After	Before	After	Before
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125	AN125	AN125
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	1000	1000
Choke type	2	2	2	2	2	2	2	2	2
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate									
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	5.87	5.11	4.56	4.01	3.83	3.74	5.06	5.03	5.03
291	6.14	5.54	4.84	4.05	3.79	3.66	5.48	5.45	5.44
169	6.93	6.28	5.36	4.28	3.94	3.78	6.21	6.19	6.17
98.7	7.91	7.17	5.92	4.5	4.08	3.88	7.09	7.07	7.04
57.4	9.05	8.2	6.47	4.68	4.19	3.96	8.09	8.06	8.04
33.4	10.3	9.29	6.93	4.78	4.24	3.99	9.13	9.09	9.1
19.5	11.7	10.4	7.28	4.84	4.27	4.02	10.2	10.1	10.2
11.3	13.1	11.4	7.5	4.86	4.28	4.01	11.1	11	11.1
6.6	14.5	12.2	7.6	4.87	4.27	4.03	11.9	11.7	11.9
3.84	15.8	12.8	7.66	4.81	4.25	3.95	12.4	12.2	12.5
2.24	16.9	13.2	7.74	4.81	4.28	3.92	12.8	12.5	12.9
1.3	17.9	13.6	7.82	4.92	4.36	3.98	13.1	12.8	13.2
0.758	18.5	13.7	7.89	4.99	4.39	4.02	13.2	12.9	13.2
0.441	19	13.9	7.99	5.18	4.55	4.2	13.5	13.1	13.6
0.257	19.5	14.1	8.46	5.54	4.67	4.22	13.8	13.6	13.9
0.15	19.7	14	8.73	5.88	4.75	4.19	14	13.7	14.1
0.0871	20.6	14.9	9.73	6.34	5.52	4.74	14.6	14.6	14.6
0.0507	22.3	15.9	11.9	8.55	5.89	6.21	16.7	16.6	17
0.0295	24.3	16.2	12.7	12.4	8.36	7.91	17.1	18.4	18.2
0.0172	27.3	23	19.5	19.1	14.6	12.4	24.5	24.5	22
0.01	34.6	23.9	30.2	30.9	20.1	19.1	30.5	28	27.6

Note that for this choke valve, samples were taken before and after full opened choke and as can be seen minor viscosity reduction was observed. At 1000 ppm AN125 the reduction was 2%.

Figure 17 – Polymer viscosity – Test 6.

					Viscosity	Degradation	Degradation
Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke
			ppm	Bar	mPas	%	%
6	2	AN125	1000	Tank	14.5	0.00	-
	2	AN125	1000	0	12.2	17.04	0.00
	2	AN125	1000	13	7.6	51.11	41.07
	2	AN125	1000	32	4.87	71.33	65.45
	2	AN125	1000	43	4.27	75.78	70.80
	2	AN125	1000	53	4.03	77.56	72.95

Table 21 Polymer degradation – Test 6.

Test 7 – 2 000 ppm AN125 with Matek choke (Choke 2)

Job Event Log Test 7

Start Time	13-Oct-15 12:56:32	ucts
End Time	13-Oct-15 14:21:03	ucts
Volume	5.617	m³

Stage	Event	Time	Descriptio	Commen	Treating	Backsid	Clea	Slurr
Numbe	Numbe	ucts	n	t	Pressur	e	n Dete	y Tamm
r	r				e bar	Pressur	L /mi	remp °C
					Dai	bar	/ n	Ŭ
	1	13-Oct-	Start Job	Starting	0.0	0.0	0	
		15		Job				
		12:56:3						
1		12:58:1	Stage 1	NEXT	0.8	1.2	-1	14.8
		9	-	STAGE		-		
		12:58:2	Start	Start Avg	0.8	1.3	-1	14.7
2		12:59:1	Stage 2	NEXT	0.7	1.3	-1	14.9
		9	otago z	STAGE	0.7	1.0	•	
	2	13:04:0	Other	Pumping	60.7	55.9	70	15.0
		0		@ 60 bar				
				opening				
				on Matek				
	2	12.04.2	Othor	choke Tako	61.2	55.4	71	15.0
	5	8	Other	sample	01.2	55.4	/1	15.0
	4	13:13:5	Other	Increase	69.0	54.0	69	15.1
		1		pressure				
				42.6%				
				open on				
				Matek				
	5	13:21:2	Other	Increase	77.9	50.7	67	15.4
	Ū	1		pressure			07	
				to80 bar				
				37.3% open op				
				Matek				
				choke				
	6	13:34:5	Other	Increase	105.4	49.6	66	14.9
		2		to 100 bar				
				33% open				
				on Matek				
	7	13:40:3	Other	Open	78.7	63.3	72	14.6
		2		Matek		2	. –	
				choke to				
	8	13:51:1	Other	Flushing	68.3	66.3	68	14.4
		5		. Idoning	00.0	00.0		
		14:21:0	End	End Avg	0.7	1.2	-1	13.8
		3	Averaging	Trt 1				

Stage Numbe r	Event Numbe r	Time ucts	Descriptio n	Commen t	Treating Pressur e bar	Backsid e Pressur e bar	Clea n Rate L/mi n	Slurr y Temp °C
	9	14:21:0 5	End Job	Ending Job	0.7	1.2	-1	13.8

Pump chart – Test 7

Polymer sample analysis – Test 7

	Tank	$\Delta P =$	100%	100%					
		5	5	15	35	51	51	Open	Open
		Bar	Bar	Bar	Bar	Bar	Bar		
		Before	After	After	After	After	Before	After	Before
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125	AN125	AN125
Concentration, ppm	2000	2000	2000	2000	2000	2000	2000	2000	2000
Choke type	2	2	2	2	2	2	2	2	2
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate	_	_	_	_	_	_	_	_	_
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	9.69	8.64	7.98	7.62	7.02	6.39	8.54	8.11	8.6
291	11	10	9.31	8.9	8	7.06	9.91	9.46	9.97
169	13.1	11.9	11.1	10.6	9.18	7.82	11.8	11.2	11.8
98.7	15.7	14.2	13.2	12.5	10.4	8.5	14.1	13.4	14.1
57.4	18.8	17	15.6	14.6	11.6	9.04	16.8	16.1	16.9
33.4	22.5	20.4	18.4	16.8	12.6	9.4	20.2	19.1	20.2
19.5	26.8	24.3	21.3	19	13.3	9.62	24	22.4	24
11.3	31.7	28.5	24	20.8	13.8	9.72	28.1	25.7	28.2
6.6	37.2	32.9	26.5	22.1	14.1	9.75	32.3	28.7	32.4
3.84	42.9	37	28.3	23	14.2	9.73	36.2	31.2	36.3
2.24	48.7	40.6	29.6	23.6	14.3	9.76	39.6	33	39.7
1.3	54	43.5	30.5	23.9	14.5	9.9	42.2	34.3	42.3
0.758	58.3	45.2	30.9	24	14.6	10	43.8	34.9	43.9
0.441	61.9	46.4	31.3	24.3	14.8	10.3	45	35.5	44.8
0.257	64.4	47.2	31.7	24.7	15.3	10.7	46	36	45.8
0.15	65.9	47.8	31.9	24.8	15.4	11	46.5	36.1	46.3
0.0871	68.8	49.3	33.4	25.8	16.9	11.8	47.6	37.5	47.1
0.0507	70.9	50.2	35.1	27.4	18.6	13.6	49.2	39.3	49.2
0.0295	75	52.1	38.1	29.4	20.2	16.6	52.7	43.2	52.1
0.0172	80.1	53.5	44.1	34.3	24.9	21.1	56.4	46.6	56.9
0.01	95.3	66.6	53.8	42.6	33.7	30.8	62.8	55	66.4

Compared with the 1000 ppm AN125 where the viscosity degradation in open choke was 2% the 2000 ppm AN125 test resulted in 12%. This deviation in degradation through open choke cannot be explained by flow behaviour though the choke. Most likely it is due to combinations of sampling and accuracy in viscosity measurements. However, parallel viscosity measurements reproduced the viscosity reported in Table 22.

	rable 25 rolymer degradation – rest 7.									
					Viscosity	Degradation	Degradation			
Test	Choke	Polymer	Conc	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke			
			ppm	Bar	mPas	%	%			
7	2	AN125	2000	Tank	37.2	0.00	-			
	2	AN125	2000	0	32.9	11.88	0.00			
	2	AN125	2000	5	26.5	29.56	20.06			
	2	AN125	2000	15	22.1	41.71	33.86			
	2	AN125	2000	35	14.1	63.81	58.93			
	2	AN125	2000	51	9.75	75.83	72.57			
	-						•			

Figure 18 – Polymer viscosity – Test 7.

Test 8 – 1 000 ppm 3630 with Matek choke (Choke 2)

Job Event Log Test 8

Start Time	13-Oct-15 14:31:20	
End Time	13-Oct-15 16:11:08	
Volume	5.587	m³

Stage Numbe	Event Numbe	Time	Descriptio	Commen t	Treating Pressur	Backsid	Clea	Slurr
r	r	4013		Ľ	e	Pressur	Rate	y Temp
					bar	e	L/mi	Э°
	1	12.0-1	Chart Jak	Chantin a	0.0	bar	n	10.0
	1	13-Oct- 15 14:31:1	Start Job	Job	0.8	1.2		13.8
		8						
1		15:10:0 4	Stage 1	NEXT STAGE	0.7	1.2		13.3
		15:10:0	Start	Start Avg	0.7	1.2		13.3
	2	5	Averaging	Trt 1	F0 7	F1 /	(0	10.1
	2	5	Other	pumping @ 60 bar 50% open Matek choke	58.7	51.6	69	13.1
	3	15:26:4 3	Other	Increase pressure 70 bar 43.9% open on Matek choke	70.9	54.0	70	12.7
	4	15:37:2 4	Other	Increase pressure to 80 bar 40.2 % open on Matek choke	85.1	57.8	69	12.5
	5	15:50:4 8	Other	Increase pressure to 100 bar 33.2% open on Matek choke	100.4	49.6	70	12.4
	6	15:56:4 4	Other	Open Matek choke to 100%	86.7	50.6	70	12.4
	7	16:05:2 2	Other	Flushing	-0.9	1.2	84	12.4
		16:11:0 8	End Averaging	End Avg Trt 1	0.8	1.0	12	12.5
	8	16:11:1 1	End Job	Ending Job	0.8	1.0	8	12.5

Pump chart – Test 8

Polymer sample analysis – Test 8

Table 24 Polymer viscosity – Test 8.									
	Tank	$\Delta P =$	100%	100%					
		13	13	32	43	53	53	Open	Open
		Bar	Bar	Bar	Bar	Bar	Bar	Choke	
		Before	After	After	After	After	Before	After	Before
Polymer	3630	3630	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	1000	1000
Choke type	2	2	2	2	2	2	2	2	2
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	
rate									
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas	
500	8.81	6.02	5.26	5.01	4.29	3.84	6.02	5.71	6.14
291	9.22	6.46	5.76	5.47	4.45	3.81	6.39	6.25	6.46
169	8.41	7.45	6.63	6.2	4.84	3.99	7.35	7.2	7.44
98.7	9.73	8.73	7.69	7.03	5.23	4.15	8.62	8.44	8.73
57.4	11.7	10.4	8.94	7.62	5.6	4.28	10.2	9.99	10.4
33.4	14	12.3	10.3	8.22	5.86	4.35	12.2	11.9	12.3
19.5	16.9	14.7	11.7	8.88	6.05	4.39	14.5	14.1	14.8
11.3	20.5	17.4	12.9	9.38	6.14	4.41	17.2	16.5	17.5
6.6	24.8	20.3	14	9.67	6.2	4.41	20	19	20.5
3.84	29.8	23.1	14.8	9.83	6.13	4.37	22.8	21.2	23.6
2.24	35.6	25.6	15.2	9.96	6.11	4.4	25.3	23.1	26.3
1.3	41.7	27.6	15.5	10.1	6.24	4.49	27.4	24.6	28.6
0.758	47.5	28.9	15.7	10.2	6.36	4.6	28.7	25.4	30.1
0.441	52.8	30	15.7	10.5	6.52	4.67	29.8	25.9	31.2
0.257	57.4	30.6	16.2	10.8	6.97	4.88	30.4	26.4	31.8
0.15	61.1	30.8	16.2	10.9	7.05	4.82	30.6	26.4	32.4
0.0871	63.5	31.7	16.3	12.1	7.92	5.85	32.1	27.5	33.4
0.0507	67	32.8	17.1	13.4	9.36	6.94	31.3	28.5	35.6
0.0295	71.2	34.4	16.1	15.3	14	8.59	36.5	30.4	37.7
0.0172	74.6	38	18.9	23.1	16.9	11.8	41	33.9	40
0.01	84.6	44.2	22.4	30	23.5	19.3	48.6	37.8	48.3

Viscosity degradation through open choke was for 1000 ppm 3630 was 8%.

Figure 19 – Polymer viscosity – Test8.

Table (25	Poly	mer	degr	adatio	n _ 7	Cest	8
1 abic 4	20	rory	mor	uegi	auatio			υ.

Choke	Polymer	Conc	ΔP	Viscosity at 6.6 s^-1	Degradation Relative to Tank	Degradation before -after choke
		ppm	Bar	mPas	%	%
2	3630	1000	Tank	24.8	0	-
2	3630	1000	0	20.3	18.9	0.0
2	3630	1000	13	14	45.4	32.6
2	3630	1000	32	9.67	63.6	55.1
2	3630	1000	43	6.2	78.2	73.1
2	3630	1000	53	4.39	85.8	82.4
	Choke 2 2 2 2 2 2 2 2 2 2	Choke Polymer 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630 2 3630	Choke Polymer Conc ppm 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000 2 3630 1000	Choke Polymer Conc ΔP ppm Bar 2 3630 1000 Tank 2 3630 1000 0 2 3630 1000 0 2 3630 1000 13 2 3630 1000 32 2 3630 1000 43 2 3630 1000 53	Choke Polymer Conc ΔP at 6.6 s^-1 ppm Bar mPas 2 3630 1000 Tank 24.8 2 3630 1000 0 20.3 2 3630 1000 13 14 2 3630 1000 32 9.67 2 3630 1000 43 6.2 2 3630 1000 53 4.39	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	Table 20 polymer mitation – Test 8.									
				Choke 2	Choke 2	Choke 2				
Sample	ΔP , bar	Polymer	Conc, ppm	FR	Time, s	Shear rate	SF			
Diluted lab		3630	1000	-						
Brine lab		NaCl	5000	-						
Tank		3630	1000	1.098	920	8.32E+03	30.67			
Brine Tank		NaCl	5000	1	30	2.55E+05	1.00			
Before choke	13	3630	1000	1.065	326	2.35E+04	10.87			
Before choke	32	3630	1000	-	-	-				
Before choke	43	3630	1000	-	-	-				
Before choke	53	3630	1000	-	-	-				
After choke	13	3630	1000	1.047	192	3.99E+04	6.40			
After choke	32	3630	1000	1.049	125	6.12E+04	4.17			
After choke	43	3630	1000	1.038	79	9.69E+04	2.63			
After choke	53	3630	1000	1	54	1.42E+05	1.80			

Table 26 polymer filtration – Test 8.

Test 9 – 1 000 ppm 3630 with fixed Halliburton chokes 20/64 "and 24/64 "

Job Event Log – Test 9

Start Time	16-Oct-15 11:01:35	
End Time	16-Oct-15 14:17:33	
Volume	10.151	m³

Stage	Event	Time	Descriptio	Comment	Treating	Backsid	Clea	Slurr
r	NUMDe	ucts	n		Pressur	e Prossur	n Rato	y Temn
•					bar	e	L/mi	°C
						bar	n	· ·
-	1	16-Oct-	Start Job	Starting	0.0	0.0	0	
		11:01:3 2		300				
1		12:52:4 7	Stage 1	NEXT STAGE	-1.2	1.3	55	14.3
		12:52:4 8	Start Averaging	Start Avg Trt 1	-1.4	1.3	55	14.4
	2	12:54:2 0	Other	Flushing sample point	9.6	1.3	130	12.9
	3	12:59:3 6	Other	Start sampling on 10 bar diff.pressur e	14.4	1.5	119	14.4
	4	13:02:0 6	Other	Finish sampling	15.0	1.2	118	14.7
	5	13:04:5 6	Other	Start sampling 20 bar dif. pressure	23.9	1.4	141	14.9
	6	13:06:0 9	Other	Finish sampling	13.8	1.1	141	15.0
	7	13:06:5 0	Other	Flushing sample point	27.8	1.3	165	15.1
	8	13:08:3 4	Other	Start sampling 30 bar dif. pressure	34.4	1.5	170	15.1
	9	13:09:4 5	Other	Finish sampling	34.6	1.6	172	15.1
	10	13:11:2 6	Other	Changing gear on pump	55.8	1.6	179	15.3
	11	13:12:1 5	Other	Start flushing sample point	47.6	1.5	213	15.3
	12	13:13:3 5	Other	Start sampling 50 bar dif. pressure	55.0	1.7	211	15.4

Stage	Event	Time	Descriptio	Comment	Treating	Backsid	Clea	Slurr
Numbe	Numbe	ucts	n		Pressur	е	n	У
r	r				e	Pressur	Rate	Temp
					bar	e bar	L/mi	Ů
	13	13:14:5	Other	Finish	54.3	Dai	219	15.5
		8	011101	sampling	0.110		2.7	
	14	13:15:4	Other	Stop	0.8	1.3	-1	15.4
		6		changing				
				choke to				
	45	10.1(.0	Others	24/64	10.0	1.4	50	15.4
	15	13:16:2 7	Other	pumping on	10.3	1.4	58	15.4
				24/64				
	1/	10 17 0	Others	choke	10.0	1.4	170	15.4
	10	8	Other	flushing	12.3	1.4	179	15.4
	17	13:18:2	Other	Start	13.9	1.6	178	15.5
		3		sampling				
				10 bar dif.				
	18	13:20:2	Other	Finish	12.3	1.4	177	15.6
	10	8		sampling				45 (
	19	13:21:3 9	Other	Start	22.0	1.4	223	15.6
		,		sample				
			0.11	point				
	20	13:24:0	Other	Start	23.0	1.6	222	15.7
		5		20 bar dif.				
		10.05.0	0.11	pressure				45.0
	21	13:25:2 4	Other	Finish	23.8	1.6	221	15.8
	22	13:26:1	Other	Start	27.9	1.5	263	15.8
		9		flushing				
	23	13:27:5	Other	Start	33.7	1.8	266	15.9
		U		30 bar dif.				
				pressure				
	24	13:29:2	Other	Finish	28.4	1.6	256	15.8
	25	13:30:0	Other	Start	49.2	1.8	328	15.8
		6		flushing				
				sample				
	26	13:31:5	Other	Start	53.5	1.9	326	15.8
		0		sampling				
				50 bar dif.				
	27	13:32:4	Other	Finish	54.3	1.7	327	15.7
		2		sampling				
	28	13:33:0 1	Other	Stop	0.8	1.4	38	15.6
	29	13:39:2	Other	New test	0.5	1.3	21	15.1
		5		20/64				
	30	13.40.5	Other	choke Start	0 1	1 0	108	1 <i>1</i> Q
	30	4		flushing	7.1	1.5	100	14.0

Stage	Event	Time	Descriptio	Comment	Treating	Backsid	Clea	Slurr
r	r	ucis			e	Pressur	Rate	y Temp
					bar	e	L/mi	°C
						bar	n	
	31	13:42:3 1	Other	Start sampling 10 bar dif. pressure 20/64 choke	10.4	1.3	109	14.6
	32	13:43:4 3	Other	Finish sampling	12.3	1.5	109	14.4
	33	13:44:0 3	Other	Stop pumping	23.1	1.2	105	14.4
	34	13:47:2 9	Other	Start pumping without screw pump	1.4	1.5	3	14.2
	35	13:48:0 9	Other	Start flushing	0.9	1.3	79	14.2
	36	13:48:2 5	Other	Stop pumping	0.8	1.2	76	14.1
	37	13:50:0 7	Other	Start pumping	1.0	1.2	77	14.0
	38	13:51:5 3	Other	Start flushing	38.1	38.7	71	13.7
	39	13:53:2 6	Other	Start sampling without screw pump	41.6	42.1	71	13.5
	40	13:54:0 7	Other	Finish sampling	48.6	49.3	70	13.5
	41	13:54:4 8	Other	Increase rate to 400 Ipm	48.6	48.9	149	13.4
	42	13:57:2 9	Other	Start flushing	46.5	46.0	408	13.3
	43	13:58:2 0	Other	Start sampling without 400 lpm	46.9	46.6	408	13.2
	44	13:58:5 6	Other	Finish sampling	47.5	47.0	408	13.1
	45	13:59:2 2	Other	Stop pumping	31.6	31.5	401	13.1
		14:17:3 3	End Averaging	End Avg Trt	0.8	1.3	-1	12.2
	46	14:17:3 6	End Job	Ending Job	0.8	1.3	-1	12.2

Pump chart – Test 9

Polymer sample analysis – Test 9

	Table 27 Viscosity reduction – Tixed chokes, $ID = 20/04^{\circ}$ and $24/04^{\circ}$, Test 9.									
				Flow		Viscosity	Degradation	Degradation		
Test	Choke	Polymer	Conc	rate	ΔP	at 6.6 s^-1	Relative to Tank	before -after choke		
			ppm	lpm	Bar	mPas	%	%		
9	4	3630	1000		Tank	27.6	0.00	-		
	4	3630	1000		0	25.4	8.27	0.00		
20/64"	4	3630	1000	108	10	14.3	50.00	45.49		
	4	3630	1000	141	20	11.8	59.40	55.74		
	4	3630	1000	171	31	10	66.17	63.11		
	4	3630	1000	214	51	7.8	74.44	72.13		
	5	3630	1000		Tank	27.6	0.00	-		
	5	3630	1000		0	25.1	9.40	0.00		
24/64"	5	3630	1000	177	12	14.1	50.75	45.64		
	5	3630	1000	221	21	11.9	59.02	54.77		
	5	3630	1000	261	31	10.5	64.29	60.58		
	5	3630	1000	328	52	7.9	74.06	71.37		

Table 27 Viscosity reduction – Fixed chokes, ID = 20/64" and 24/64", Test 9.

Test 10 – 1 000ppm 3630 with SNF choke system

Job Event Log Test 10

Start Time	21-Oct-15 09:02:59	ucts
End Time	21-Oct-15 13:59:42	ucts
Volume	19.872	m³

Stage	Event	Time	Description	Comment	Treating	Backside	Clean	Slurry
Number	Number	ucts			bar	Pressure bar	L/min	°C
	1	21-Oct- 15 09:02:57	Start Job	Starting Job	0.2	1.2	-0	
	2	09:49:59	Other	start leak test SNF choke	118.2	119.3	0	
	3	10:00:00	Other	SNF choke test OK	116.9	118.1	0	
1		10:40:05	Stage 1	Reference tester SNF Vann	3.0	1.4	74	9.3
		10:40:06	Start Averaging	Start Avg Trt 1	3.0	1.5	74	9.3
	4	10:50:13	Other	Reference SNF 400m water	49.3	2.1	399	10.7
	5	10:55:14	Other	Reference SNF 200m Vann	28.0	2.0	405	10.7
	6	10:58:27	Other	Reference SNF 50m Vann	7.3	1.9	401	10.6
2		11:07:08	Stage 2	NEXT STAGE	0.5	1.3	0	10.1
	7	11:13:17	Other	Reference test 1000ppm std pol. 50m	-0.5	1.9	316	10.5
	8	11:22:00	Other	Reference SNF 1000ppm std. pol. 200m	0.4	1.5	58	10.0
3		13:17:03	Stage 3	NEXT STAGE	0.5	1.4	0	9.7
	9	13:20:33	Other	Choke test SNF 400m 80L/min w. screw pump 1000ppm std polymer	-1.3	1.5	70	9.7

Stage Number	Event Number	Time ucts	Description	Comment	Treating Pressure bar	Backside Pressure bar	Clean Rate L/min	Slurry Temp °C
	10	13:27:15	Other	Choke Test SNF 400m 4001/min w. screw pump 1000ppm std polymer	7.3	1.6	157	9.9
	11	13:35:04	Other	Choke test SNF 400m 6001/min w. screw pump 1000 ppm std polymer	36.0	3.0	522	10.6
	12	13:49:43	Other	Choke test SNF 200m 600I/min w. screw pump 1000ppm std polymer	35.6	3.9	698	10.6
		13:59:42	End Averaging	End Avg Trt 1	0.6	1.3	0	10.6
	13	13:59:45	End Job	Ending Job	0.6	1.3	0	10.5

Pump chart – Test 10

Polymer sample analysis – Test 10

		Table 28 Polymer viscosity – Test 10.						
		400 lpm	400 lpm	600 lpm	600 lpm	600 lpm	600 lpm	70 lpm
	Tank	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$	$\Delta P =$	
		20	20	23	23	40	40	
		Bar	Bar	Bar	Bar	Bar	Bar	
		Before	After	Before	After	Before	After	Before
Polymer	3630	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000	1000
Choke type	3	3	3	3	3	3	3	3
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate								
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	9.47	8.78	8.15	7.7	6.61	7.81	6.55	7.88
291	10.2	8.84	7.78	7.35	7.12	7.3	7.05	7.4
169	9.31	8.67	8.81	8.53	8.3	8.52	8.23	8.48
98.7	10.7	10.5	10.5	10.2	9.85	10.1	9.77	10.1
57.4	13	12.7	12.7	12.2	11.8	12.2	11.7	12.1
33.4	15.8	15.4	15.4	14.8	14.3	14.8	14.2	14.7
19.5	19.4	18.8	18.9	18	17.4	18	17.2	17.8
11.3	23.8	23.1	23.1	22	21.1	21.9	20.9	21.7
6.6	29.4	28.5	28.4	26.8	25.6	26.7	25.2	26.5
3.84	36.1	34.7	34.6	32.1	30.2	31.9	29.6	31.8
2.24	43.8	41.9	41.3	37.7	34.8	37.5	33.9	37.5
1.3	52.4	49.7	48.2	43.2	38.8	42.9	37.7	43.1
0.758	61	57.2	54.6	47.8	42	47.6	40.5	47.8
0.441	68.7	63.8	59.6	51	43.7	50.9	42	51.1
0.257	75.3	69	63.5	53.1	44.5	53	42.8	53
0.15	81	73.8	66.4	54.3	44.9	54.9	43.2	54.6
0.0871	84.3	77.2	68	54.1	43.7	54.7	42.7	54.3
0.0507	86.3	80.6	69.9	56.2	43.7	55.5	43	54.4
0.0295	87.1	87.1	70.3	53.4	42.2	57.9	43.8	51.5
0.0172	87.2	94.1	72.2	49.1	42.3	56.2	43.4	48.9
0.01	81.3	99.2	68.3	50.2	35.5	60.6	48.5	46.9

There was through the tests with Chokes 1 and 2 a general observation that viscosity was degraded from Tank to sampling point before choke. The Choke 2 tests, which was performed at 70 lpm, indicated larger viscosity reduction than for Choke 1 (at 400 lpm). To verify the hypothesis that the viscosity reduction through the pump was rate dependent, samples from choke 3 was taken at flow rate of 70, 400 and 600 lpm. As can be seen from the viscosity data, the degradation at 70 and 600 lpm was approximately the same, while the viscosity reduction at 400 lpm was slightly less. Rate dependent viscosity reduction through the pumps may therefore be ruled out.

Figure 20 – Polymer viscosity – Test 10.

Table 29	Polvmer	degradation	- Test	10.
10010 -/		avgraduion	1.000	- · ·

Test	Choke	Polymer	Conc	ΔP	Viscosity at 6.6 s^-1	Degradation Relative to Tank	Degradation before -after choke
			ppm	Bar	mPas	%	%
10	3	3630	1000	Tank	29.4	0.00	-
	3	3630	1000	0	28.5	3.17	0.00
	3	3630	1000	20	28.4	3.52	0.36
	3	3630	1000	23	26.8	9.15	6.18
	3	3630	1000	40	26.7	9.51	6.55

Figure 21 – Viscosity degradation, showing the effect of at which shear rate the degradation is derived – Test 10.

Table J2 above shows that the polymer degradation in this test is significantly lower during the Choke 1 and 2 tests. At the shear rate of 6.6 s⁻¹, the degradation is less than 10%. However, as shown in Fig. J2, the degradation depends strongly on at which shear rate the degradation is calculated. This is however a common observation for all degradation experiments.

			· .				
				Choke 3	Choke 3	Choke 3	
Sample	ΔP , bar	Polymer	Conc, ppm	FR	Time, s	Shear rate	SF
Diluted lab		3630	1000	-	-	-	
Brine lab		NaCl	5000	-	-	-	
Tank		3630	1000	1.06	806	9.50E+03	26.87
Brine Tank		NaCl	5000	1.00	30	2.55E+05	1.00
Before choke	20	3630	1000	1.04	466	1.64E+04	15.53
Before choke	23	3630	1000	-	-	-	
Before choke	40	3630	1000	-	-	-	
After choke	20	3630	1000	1.04	556	1.38E+04	18.53
After choke	23	3630	1000	1.02	333	2.30E+04	11.10
After choke	40	3630	1000	1.02	329	2.33E+04	10.97

Table 30 Polymer filtration – Test 10.

Figure 22 – Viscosity degradation, effect of filtration – Test 10.

From the Choke 1 and Choke 2 tests, the degradation through the filter was marginal. Figure 22 shows that this is not valid for choke 3; at all four test combinations, the filtrate was significantly degraded. For the test samples at 20 to 40 bar, this is explained by the high shear rate through the filter (1-2E+04 s-1) which will degrade the polymer. For comparison, the same or even high shear rates did not further degrade the polymer in choke 1 and 2. This is because in these tests the polymer was already severely degraded through the choke.

Compared with test 1, shear rate of $1.4E+03 \text{ s}^{-1}$ did not degrade the polymer while shear rate of $9.5E+03 \text{ s}^{-1}$ in test 10 did.
	Table 31 H	Polymer vis	scosity afte	r filtration	– Test 10.		
	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	Filtrate
		400 lpm	400 lpm	600 lpm	600 lpm	600 lpm	600 lpm
	Tank	$\Delta P =$	$\Delta P =$	ΔP =	$\Delta P =$	ΔP =	$\Delta P =$
		20	20	23	23	40	40
		Bar	Bar	Bar	Bar	Bar	Bar
		Before	After	Before	After	Before	After
Polymer	3630	3630	3630	3630	3630	3630	3630
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000
Choke type	3	3	3	3	3	3	3
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate							
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	8.7		7.5		6.4	6.95	6.3
291	9.16		7.23		6.96	7.12	6.93
169	8.59		8.4		8.11	8.28	8.07
98.7	10.4		9.99		9.61	9.82	9.55
57.4	12.5		12		11.5	11.8	11.4
33.4	15.2		14.5		13.9	14.2	13.8
19.5	18.5		17.5		16.8	17.2	16.6
11.3	22.6		21.3		20.2	20.8	20
6.6	27.7		25.8		24.1	25	23.8
3.84	33.7		30.9		28.1	29.6	27.6
2.24	40.4		36.2		31.8	34.2	31.2
1.3	47.5		41.4		35	38.5	34.1
0.758	54.3		45.8		37.3	41.8	36.2
0.441	60.1		48.5		38.1	43.9	37.1
0.257	64.5		50.5		38.4	44.9	37.3
0.15	68.2		51.7		38.6	46	37.4
0.0871	/0.6		50.7		37.4	45.2	36.5
0.0507	/2		49.9		36.1	44.4	36.7
0.0295	/2.8		47.9		34.5	42.5	34.4
0.0172	/3		43.5		30.4	42.1	34.3
0.01	/4.7		31		26.2	37	29.5

Test 11 – 2 000 ppm 3630 and 1 000 ppm AN125 with SNF choke system (Choke 3)

JOD Event Lo		
Start Time	22-Oct-15 08:34:26	
End Time	22-Oct-15 14:02:04	
Clean Volume	24.335	m³

Stage	Event	Time	Descripti	Comme	Treatin	Backsi	Clea	Stag	Slurr
er	er	ucts	on	nt	y Pressu	Pressur	Rate	Clea	y Tem
					re	е	L/mi	n	р
					bar	bar	n	Vol	С°
	1	22-0ct-	Start Job	Starting	0.5	1.2	-0	M ³	11 5
	I	15	51811 500	Job	0.5	1.2	-0	5	11.5
		08:34: 24							
1		10:36: 28	Stage 1	NEXT STAGE	0.5	1.3	-0	- 0.014	11.3
		10:36: 29	Start Averaging	Start Avg Trt 1	0.5	1.3	-0	- 0.014	11.3
2		10:36:	Stage 2	S&F	0.5	1.4	-0	-	11.3
		44		2000ppm Std				0.014	
				polymer					
	2	10:37:	Other	400m 400L /min	2.7	1.5	175	0.001	11.3
		34		w. screw					
				pump					
				5&F 2000ppm					
				Std					
	2	10.47.	Othor	polymer 400m	20.4	2.7	447	2 700	11.0
	3	37	Other	40011 600L/min	29.4	2.1	447	3.709	11.9
				w.screw					
				pump Տ&F					
				2000ppm					
				Std					
	4	11:00:	Other	6001 /min	18.1	2.6	448	8.646	12.1
	-	54		200m w.					
				screw					
				S&F					
				2000ppm					
				sta polymer					
3		13:33:	Stage 3	NEXT	0.6	1.3	-0	11.97	11.8
		33	Othor	STAGE	10.0	1.0	011	0	11.0
	Э	02	Uther	test S&F	12.0	1.9	211	0	11.8
				400m					
				400L/min					
				Enh.					
				Polymer					

Job Event Log Test 11

Stage Numb er	Event Numb er	Time ucts	Descripti on	Comme nt	Treatin g Pressu re bar	Backsi de Pressur e bar	Clea n Rate L/mi n	Stag e Clea n Vol m ³	Slurr y Tem p °C
	6	13:42: 36	Other	Choke test S&F 400m 600L/min 1000ppm enh. Polymer	28.3	2.2	471	15.32 2	12.3
	7	13:51: 27	Other	Choke test S&F 200m & 600L/min 1000ppm enh. Polymer	4.6	1.3	100	19.21 1	12.0
		14:02: 04	End Averaging	End Avg Trt 1	0.5	1.2	-0	23.82 8	11.8
	8	14:02: 07	End Job	Ending Job	0.5	1.2	-0	23.82 8	11.8

Pump chart – Test 11a

Test 11 2000 ppm standard polymer SNF choke

HALLIBURTON

Pump chart – Test 11b

Polymer sample analysis – Test 11

	Tab	ole 32 Poly	mer viscosi	ty – Test 1	1a.			
		400 lpm	400 lpm	600 lpm	600 lpm	600 lpm	600 lpm	
	Tank	ΔP =	ΔP =	ΔP =	$\Delta P =$	ΔP =	ΔP =	
		18	18	25	25	44	44	
		Bar	Bar	Bar	Bar	Bar	Bar	
		Before	After	Before	After	Before	After	
Polymer	3630	3630	3630	3630	3630	3630	3630	
Concentration, ppm	2000	2000	2000	2000	2000	2000	2000	
Choke type	3	3	3	3	3	3	3	
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	
rate								
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas	
500	16.8	14.3	14.1	13.9	14.1	14.8	12.8	
291	19.4	14.3	14.1	14.2	14.2	14.7	14.1	
169	19	17.7	17.7	17.8	17.8	17.9	17.6	
98.7	23.7	22.5	22.5	22.6	22.7	22.9	22.3	
57.4	30.9	28.9	28.9	29.1	29.2	29.5	28.7	
33.4	40.4	37.5	37.5	37.8	37.9	38.4	37.3	
19.5	53.2	49.2	49.3	49.7	49.9	50.4	49	
11.3	70.7	65.1	65.3	65.9	66.1	66.9	64.9	
6.6	94.6	86.6	86.9	87.8	88.2	89.2	86.6	
3.84	127	115	115	117	117	119	115	
2.24	170	151	152	154	155	158	152	
1.3	225	196	197	200	202	206	197	
0.758	293	246	247	252	256	262	247	
0.441	371	298	300	307	312	323	300	
0.257	458	350	351	360	369	386	351	
0.15	555	401	401	411	425	450	399	
0.0871	657	446	445	457	475	510	439	
0.0507	763	484	481	495	520	566	474	
0.0295	875	519	516	532	555	617	502	
0.0172	989	547	544	555	589	663	524	
0.01	1110	569	568	586	621	703	540	

Figure 23 – Viscosity degradation – Test 11a.

Table 33	Polymer	degradation	– Test 11a.

Test	Choke	Polymer	Conc	ΔΡ	Viscosity at 6.6 s^-1	Degradation Relative to Tank	Degradation before -after choke
			ppm	Bar	mPas	%	%
11	3	3630	2000	Tank	94.6	0.00	-
	3	3630	2000	0	86.6	8.55	0.00
	3	3630	2000	18	86.9	8.23	-0.35
	3	3630	2000	25	88.2	6.84	-1.87
	3	3630	2000	44	86.6	8.55	0.00

	Tal	ole 34 Poly	mer viscos	ity –Test 1	1b.		
		400 lpm	400 lpm	600 lpm	600 lpm	600 lpm	600 lpm
	Tank	ΔP =	ΔP =	$\Delta P =$	ΔP =	$\Delta P =$	$\Delta P =$
		17	17	20	20	38	38
		Bar	Bar	Bar	Bar	Bar	Bar
		Before	After	Before	After	Before	After
Polymer	AN125	AN125	AN125	AN125	AN125	AN125	AN125
Concentration, ppm	1000	1000	1000	1000	1000	1000	1000
Choke type	3	3	3	3	3	3	3
Shear	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity
rate							
1/s	mPas	mPas	mPas	mPas	mPas	mPas	mPas
500	5.94	5.28	5.6	5.2	5.11	5.22	5.11
291	6.14	5.71	6.09	5.61	5.52	5.63	5.52
169	6.91	6.47	6.93	6.34	6.25	6.36	6.26
98.7	7.88	7.4	7.97	7.23	7.14	7.25	7.15
57.4	8.99	8.48	9.19	8.26	8.16	8.29	8.18
33.4	10.2	9.64	10.5	9.36	9.23	9.4	9.25
19.5	11.6	10.8	12	10.5	10.3	10.6	10.4
11.3	13	12	13.3	11.6	11.3	11.6	11.3
6.6	14.5	13	14.8	12.6	12.2	12.6	12.3
3.84	15.7	13.7	15.8	13.3	12.8	13.4	12.8
2.24	16.7	14.2	16.5	13.8	13.1	13.8	13.1
1.3	17.5	14.5	17.1	14.3	13.4	14	13.3
0.758	18	14.7	17.5	14.6	13.5	14.2	13.5
0.441	18.1	14.7	17.8	15.2	13.5	14.2	13.7
0.257	17.7	14.6	18.2	15.9	13.5	14.4	14.2
0.15	17.6	15.4	19.2	19.3	14.1	14.5	14.7
0.0871	16.7	15.2	19.6	22	14	14.2	15.5
0.0507	15.1	17.2	21.6	28.2	15.5	15.4	18.2
0.0295	14.2	17.2	24.8	41	17.9	16.9	23.8
0.0172	8.44	18.4	37.4	58.2	21.7	19.1	28.3
0.01	7.63	22.2	53.1	88.2	28.2	31.8	40.7

Figure 24 – Viscosity degradation – Test 11b.

1000 JJ 1000000000000000000000000000000

Test	Choke	Polymer	Conc	ΔP	Viscosity at 6.6 s^-1	Degradation Relative to Tank	Degradation before -after choke
			ppm	Bar	mPas	%	%
11b	3	AN125	1000	Tank	14.5	0.00	-
	3	AN125	1000	0	13	11.11	0.00
	3	AN125	1000	17	14.8	-2.22	-15.00
	3	AN125	1000	20	12.2	17.04	6.67
	3	AN125	1000	38	12.3	16.30	5.83

				Choke 3	Choke 3	Choke 3	
Sample	Δ P, bar	Polymer	Conc, ppm	FR	Time, s	Shear rate	SF
Diluted lab		AN125	1000	-	-	-	
Brine lab		NaCl	5000	-	-	-	
Tank		AN125	1000	1.06	258	2.97E+04	8.60
Brine Tank		NaCl	5000	1.00	30	2.55E+05	1.00
Before choke	17	AN125	1000	1.02	159	4.81E+04	5.30
Before choke	20	AN125	1000	-	-	-	
Before choke	38	AN125	1000	-	-	-	
After choke	17	AN125	1000	1.05	181	5.32E+04	6.03
After choke	20	AN125	1000	1.02	144	5.63E+04	4.80
After choke	38	AN125	1000	1.02	136	5.63E+04	4.53

Table 36 Polymer filtration – Test 11b.

Test 12 – 1 000 ppm standard polymer through 3 fixed chokes (1st round)

Job Event Log – Test 12							
Start Time	26-Oct-15 09:34:52						
End Time	27-Oct-15 08:38:04						
Clean Volume	23.970	m³					

Event	Time	Descripti	Comment	Treating	Backsid	Clea	Slurr
Numbe	ucts	on		Pressur	е	n	У
r				е	Pressur	Rate	Temp
				bar	е	L/mi	С°
					bar	n	
1	26-Oct-15 09:34:52	Start Job	Starting Job	1.4	0.2	-0	8.3
2	10:41:36	Other	establishing choke levels	20.0	0.9	402	10.0
3	12:27:03	Other	1000ppm std polymer, 3 chokes 50-32-16-0 bar	1.2	0.3	0	12.7
4	12:43:07	Other	adjusting chokes	6.4	1.4	179	13.1
5	12:48:14	Other	1000ppm standard, 3 chokes 30- 20-10-0 bar	17.9	5.2	363	12.6
6	13:44:58	Other	establishing choke positions before test	4.6	0.7	50	11.8
7	13:50:57	Other	trying to achieve 15- 10-5-0 bar drop	4.1	-0.5	90	11.9
8	14:02:03	Other	establishing rate for 5 bar drop	1.2	0.3	-0	11.7
9	14:07:53	Other	1000ppm std polymer5-10 bar drop pr. choke	35.7	26.9	373	11.9
10	14:19:59	Other	establishing choke opening	4.2	2.7	0	11.6
11	14:31:05	Other	1000ppm std. polymer, 15-10-5-0 bar drop	1.3	0.3	-0	11.5
12	27-Oct-15 08:38:04	End Job	Ending Job	1.3	0.1	-0	8.2

Pump chart – Test 12

Note. The pressure readings on the chart are logged after the first choke valve and after the second choke valve. The pressure before the first choke was recorded manually

Test 13 – 1 000 ppm standard polymer through 3 fixed choke (2nd round control test)

Event Numbe r	Time ucts	Descriptio n	Commen t	Treating Pressur e bar	Backsid e Pressure bar	Clea n Rate L/min	Stag e Clea n Vol m ³	Slurr y Temp °C
1	27-Oct- 15 13:23:0 6	Start Job	Starting Job	1.1	0.4	-0	-0.000	14.7
2	13:40:2 5	Other	1000ppm standard polymer, 200 lpm, 5 bar diff over 3 choker	13.7	5.0	197	0.636	14.9
3	13:44:4 4	Other	samples taken with pressures at 35-30- 25 bar	29.9	24.2	210	1.479	14.6
4	15:13:1 1	Other	3 chokes 15-10-5 bar 77 lpm	10.0	5.0	78	3.540	12.8
5	16:04:2 5	End Job	Ending Job	1.2	0.3	-0	3.935	12.6

Job Event Log Test 13

Pump chart – Test 13

Note. The pressure readings on the chart are logged after the first choke valve and after the second choke valve. The pressure before the first choke was recorded manually

Polymer sample analysis – Tests 12 and 13

Three choke valves were put in series and SNF sampling devices were placed after choke valve 1 and after choke valve 2. Sampling after choke 3 at atmospheric pressure was performed by standard sampling. Pressure reading was performed before and after choke 2. Outlet pressure was atmospheric pressure, while choke valve 1 was adjusted to same opening and differential pressure as choke 2. The line pressure as well as differential choke valve pressure are tabulated in Table L1 below. To be able to produce stable differential pressure in the range of 5 to 20 bar, the flow rate was varied, e.g. in the first experiment, Test 12a, the flow rate was 400 lpm, and the differential pressures were 15, 15 and 25 bar, while in Test 13b, the flow rate was 78 lpm and the differential pressures were 5, 5 and 5 bar.

In Test 12 the tank viscosity was 27. 5 mPas, while in Test 13 the tank viscosity was 21.9 mPas. From previous tests some viscosity reduction was observed from the tank to the sampling point before choke. In these tests, no sampling was performed before the first choke. In the estimation of viscosity degradation it was assumed that viscosity degradation before first choke will be similar as those measured in the previous tests. Therefore the viscosity before choke 1 of 24.8 mPas (Test 12) and 19.2 in Test 13a) are estimated.

	Test	Tank	Before	After	After	After	
			Choke 1	Choke 1	Choke 2	Choke 3	
12a	Q, Ipm	400					
	Pressure, bar		55	40	25	0	
	DP, bar			15	15	25	
	Visc, mPas	27.5	24.8	11.6	8.69	8.26	
	Degradation, %		0	55.4	67.7	69.5	
12b	Q, Ipm	363					
	Pressure, bar		29	21	13	0	
	DP, bar			8	8	13	
	Visc, mPas	27.5	24.8	16.4	12.5	12	
	Degradation, %		0	35.2	51.6	53.7	
12c	Q, lpm	373					
	Pressure, bar		22	16	10	0	
	DP, bar			6	6	10	
	Visc, mPas	27.5	24.8	20.5	20.3	19.5	
	Degradation, %		0	18.0	18.8	22.2	
13a	Q, lpm	200					
	Pressure, bar		36	31	26	0	
	DP, bar			5	5	26	
	Visc, mPas	21.9	19.2	15.1	15.3	10.2	
	Degradation, %		0	22.6	21.5	49.5	
13b	Q, Ipm	78					
	Pressure, bar		15	10	5	0	
	DP, bar			5	5	5	
	Visc, mPas	21.9	21.9	19	19.1	16.3	
	Degradation, %		0	13.9	13.4	26.8	

Table 37 Polymer degradation – Tests 12 and 13.

Polymer samples pH measurements.

				Choke 1	Choke 2	Choke 3			Choke 1	Choke 2	Choke 3
Sample	ΔP , bar	Polymer	Conc, ppm	рН	рН	рН	Polymer	Conc, ppm	рН	рН	рН
Diluted lab		3630	1000	7.77	-	-	AN 125	1000	7.75	-	-
Diluted lab		3630	2000	7.79	-	-	AN 125	2000	7.73	-	-
Diluted lab		3630	10000	7.25	-	-	AN 125	10000	-	-	-
Brine lab		NaCl	5000	7.96	-	-	NaCl	5000	-	-	-
Tank		3630	1000	7.65	7.69	7.53	AN 125	1000	7.73	8.23	7.87
Tank		3630	2000	7.36	-	7.37	AN 125	2000	7.70	7.84	-
Brine Tank		NaCl	5000	8.07	8.92	8.15	NaCl	5000	8.87	8.92	8.16
Before choke	Full opening	3630	1000	-	7.80	-	AN125	1000	-	8.16	-
Before choke	10	3630	1000	7.58	7.76	-	AN 125	1000	7.69	8.22	-
Before choke	20	3630	1000	7.58	7.74	7.67	AN 125	1000	7.75	8.20	7.86
Before choke	30	3630	1000	7.59	7.75	7.68	AN 125	1000	7.74	8.28	7.84
Before choke	50	3630	1000	7.61	7.79	7.64	AN 125	1000	7.77	8.20	7.74
After choke	Full opening	3630	1000	-	7.77	-	AN 125	1000	-	7.95	-
After choke	10	3630	1000	7.56	7.62	-	AN 125	1000	7.80	8.18	-
After choke	20	3630	1000	7.55	7.69	7.66	AN 125	1000	7.78	7.97	7.63
After choke	30	3630	1000	7.58	7.66	7.68	AN 125	1000	7.79	8.01	7.77
After choke	50	3630	1000	7.59	7.74	7.60	AN 125	1000	7.81	8.15	7.70
Before choke	Full opening	3630	1000	-	-	-	AN 125	2000	-	7.94	-
Before choke	10	3630	2000	7.38	-	-	AN 125	2000	7.72	7.85	-
Before choke	20	3630	2000	7.32	-	7.38	AN 125	2000	7.74	7.87	-
Before choke	30	3630	2000	7.32	-	7.40	AN 125	2000	7.75	7.89	-
Before choke	50	3630	2000	7.39	-	7.44	AN 125	2000	7.74	7.81	-
After choke	Full opening	3630	2000	-	-	-	AN 125	2000	-	7.92	-
After choke	10	3630	2000	7.35	-	-	AN 125	2000	-	7.89	-
After choke	20	3630	2000	7.34	-	7.36	AN 125	2000	7.73	7.84	-
After choke	30	3630	2000	7.44	-	7.43	AN 125	2000	7.76	7.82	-
After choke	50	3630	2000	7.44	-	7.39	AN 125	2000	7.75	7.91	-
Before choke	10	3630	10000	6.99	-	-	AN 125	10000	-	-	-
Before choke	20	3630	10000	7.04	-	-	AN 125	10000	-	-	-
Before choke	30	3630	10000	7.02	-	-	AN 125	10000	-	-	-
Before choke	50	3630	10000	7.01	-	-	AN 125	10000	-	-	-
After choke	10	3630	10000	6.95	-	-	AN 125	10000	-	-	-
After choke	20	3630	10000	7.06	-	-	AN 125	10000	-	-	-
After choke	30	3630	10000	6.94	-	-	AN 125	10000	-	-	-
After choke	50	3630	10000	7.10	-	-	AN 125	10000	-	-	-

Table 38 pH in polymer samples, Choke 1 to 3. SNF mother solutions at 15000 ppm diluted in 0.5% NaCl brine

Sample	Choke	ΔP , bar	Polymer	Conc, ppm	рН	Choke	ΔP , bar	Polymer	Conc, ppm	рН
Brine			NaCl	5000	7.51	Brine		NaCl	5000	7.51
Tank			3630	1000	7.61	Tank		3630	1000	7.61
Before choke	20/64	10	3630	1000	7.73	24/64	12	3630	1000	7.73
Before choke	20/64	20	3630	1000	7.70	24/64	21	3630	1000	7.74
Before choke	20/64	31	3630	1000	7.70	24/64	31	3630	1000	7.71
Before choke	20/64	51	3630	1000	7.69	24/64	52	3630	1000	7.71
After choke	20/64	10	3630	1000	7.68	24/64	12	3630	1000	7.74
After choke	20/64	20	3630	1000	7.73	24/64	21	3630	1000	7.70
After choke	20/64	31	3630	1000	7.68	24/64	31	3630	1000	7.71
After choke	20/64	51	3630	1000	7.70	24/64	52	3630	1000	7.70

Table 39 pH in polymer samples, Fixed chokes 4 and 5.

SNF mother solutions at 15000 ppm diluted in 0.5% NaCl brine - Fixed chokes

Table 40 pH in polymer samples, Multiple chokes.

SNF mother solutions at 15000 ppm diluted in 0.5% NaCl brine - Multiple chokes

Sample	ΔP , bar	Polymer Conc, ppm		рН	Δ P, bar	Polymer Conc, ppm		рН
Brine		NaCl	5000	7.51		NaCl	5000	7.49
Tank		3630	1000	7.61		3630	1000	7.94
After choke 1	15	3630	1000	7.66	5	3630	1000	7.70
After choke 2	15	3630	1000	7.69	5	3630	1000	7.79
After choke 3	25	3630	1000	7.64	25	3630	1000	7.68
After choke 1	8	3630	1000	7.59	5	3630	1000	7.77
After choke 2	8	3630	1000	7.66	5	3630	1000	7.87
After choke 3	13	3630	1000	7.62	5	3630	1000	7.82
After choke 1	6	3630	1000	7.62				
After choke 2	6	3630	1000	7.73				
After choke 3	10	3630	1000	7.74				

Polymer degradation – Summary

Figure 25 summarizes the single choke valve polymer shear degradation tests. Note that Choke 1 is the standard Halliburton choke, Choke 2 is the Matek choke, choke 3 is the SNF choke and chokes 4 and 5 are the fixed orifice chokes at ID = 20/64" and 24/64". Degradation is reported as the viscosity ratio before and after choke vs. differential pressure across the choke. Similar trends would have been seen if the viscosity degradation were derived relative to the tank viscosity. However the viscosity reduction at $\Delta P = 0$ would not have been 0%.

The trend lines in Figure 25 are obtained by assuming that degradation depends on the actual pressure in a similar ways as previously has been shown to match degradation in capillary tubes with shear rate.

$$\eta_D = 1 - [1 + (A \cdot \Delta P)^2]^{-m/2}$$

The curves are matched with $m = \frac{1}{2}$ and A is the tuning parameters. The results predicts that for practical purposes the maximum degradation through standard chokes reach a stable level of degradation, here in the range of 70-80%.

Figure 25 – Viscosity degradation chokes 1 to 3.

The results shown in Figure 25 are in Figures 26 to 28 shown separately for the thre different choke types.

Figure 26 – Viscosity degradation choke 1.

Figure 27 – Viscosity degradation choke 2.

Figure 28 – Viscosity degradation choke 3.

Figure 29 shows degradiation in multiple chokes. As can be seen, at differential pressures of 15, 15 and 25 bar across the three chokes, the degradation is similar to single choke. At differential pressures of 8, 8 and 13 bar, the degradation is slightly reduced. When the differential pressure is decreased to 6 and 5 bar, all the degradation took place across the first choke and the net effect is improved.

Figure 29 – Viscosity degradation multiple chokes.

Filter ratio tests revealed that the filtration rate or screen factor (defines as the ration between filtration rate of polymer and brine) depends strongly polymer rheology. Figure 30 compares screen factors for 1000 ppm 3630 in the multiple choke experiments as well as the choke 3 experiment. (Results from choke 1 and choke 2 were omitted due to poor water quality.). The blue dotted line represents a linear relationship between viscosity and screen factor, while the experiments is relatively well matched with the green curve. At low to moderate viscosity screen factor is less than predicted by Newtonian viscosity and can easily be explained by shear thinning behaviour of the polymer, i.e., the effective polymer viscosity at the actual shear rate is less than the Newtonian bulk viscosity. At higher viscosity, screen factor increases and this is due to elongation when the polymer passes the pores in the filters.

Figure 30 – Screen factor vs. effective bulk viscosity, experiments performed with 1000 ppm 3630.

Chemical waste handling

The project required a large amount of polymer solution . A total of 44 m3 15000 ppm polymer solution was received from the polymer supplier. All chemical waste was handled with care in order to avoid any spill. Waste was collected into dedicated tanks following each test stage. All polymer solution diluted down to 2000 ppm or lower were shipped to SAR for a controlled chemical distuction. Whereas, the high concentration solutions wer sent back to SNF.