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Executive Summary 
Commercial reservoir simulators cannot simulate the complex chemical interactions that we know 

from lab experiments take place and are important to model to predict the effect of EOR fluids at 

field scale. On the other hand, research codes cannot simulate a realistic field with a complicated 

production history. IORSim tries to bridge the gap between state-of-the-art research codes with a 

detailed description of the chemistry and commercial reservoir simulators that can simulate a field 

with a long and complicated production history. IORSim can be run in two modes (i) forward mode 

(ii) backward mode. In the forward mode IORSim advects species passively along the flow lines 

predicted by the reservoir simulator. In this mode one can predict reservoir pH and scale potential in 

the reservoir and in production wells. In the backward mode IORSim is run in parallel with the 

reservoir simulator, IORSim calculates the change in water chemistry and updates the flow functions 

used by the reservoir simulator.  

The backward mode has been used to study the impact of low salinity water, where the change in 

relative permeability is based on the amount of ion exchange in the reservoir. We have also used 

IORSim to simulate the silicate injection (Stavland, Jonsbråten et al. 2011, Skrettingland, Giske et al. 

2012, Skrettingland, Dale et al. 2014) performed by Statoil on the Snorre field, and history matched 

the production profile. These results are not included here as we are still discussing these results 

with the Snorre license. In this report we include a generic case, where we inject silicate to block 

several thief zones in an artificial reservoir as proof of concept.  

The block sorting numerical algorithm presented here is novel, similar ideas have been presented 

before (Natvig and Lie 2008), but this is the first time they are used to communicate with a 
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commercial reservoir simulator. We have also done several tests to check that the numerical 

algorithm converges to the correct solution.  

Introduction 
IORSim has been developed as a plug-in tool for reservoir flow software to implement and visualize 

complex reactive transport simulations. Besides the already implemented tracer, sodium silicate, and 

geochemical modules, the software design supports an uncomplicated definition and implementation 

of new chemical modules. IORSim uses a sequential iterative approach, in which a reservoir flow 

simulator is used to calculate the fluid flow while IORSim calculates the non-linear geochemical 

reactions.  

Depending on the users' requirements, IORSim can be run in a forward or backward simulation mode. 

During a forward mode simulation, IORSim is used as a post-processor tool which advects the chemical 

species transport along the flow lines. While the fluid flow of the host simulator remains unaffected, 

the high-speed forward mode is helpful to estimate the chemical species distribution in complex 

reservoir structures.  

When selecting the backward mode, the host simulator and IORSim communicate at each time step to 

update the fluid flow depending on the chemical reactions. At the current stage, IORSim uses Eclipse 

100 to implement reactive multiphase flow simulation in reservoir structures. The backward mode 

communication process between IORSim and the host simulator is depicted in Figure 1. The user 

initially creates a standard Eclipse data file (root.data), including all common Eclipse subfiles such as 

PVT, relative permeability, and well schedule files. After starting the simulation, Eclipses computes the 

first timestep and writes the output files. IORSim then pauses the Eclipse simulation to initiate the 

geochemical species transport and reaction computations. 

 

Figure 1: Communication process between Eclipse and IORSim 

In the next sections we describe the geochemical model in IORSim, and the silicate model. Then we 

present some simulation results using these models. Next, we present in detail how IORSim 

communicate with a reservoir simulator (ECLIPSE), and how we can calculate information about 

passive and active tracers in the reservoir, and how we can use this approach to calculate rock fluid 

interactions and feed this information back to the reservoir simulator. Finally, we present the 

graphical user interface to IORSim. 

IORSim

interface
ECLIPSE

IORSim

interface
IORSim

ROOT.EGRID
• Gird dimensions
• Cell sizes

ROOT.UNRST
• Phase saturations
• Phase volume flows

ROOT.RFT
• Phase volume flows
• Formation factor
• Well Flow rates

ROOT.INIT
• Transmissibility
• Permeability
• Porosity

ROOT.TRCINP
• Initial species 

concentration
• Species injection 

concentration

ROOT.SATNUM
• Updated rel. perm
• Updated capillary 

pressure
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The geochemical model in IORSim 

Introduction 

The geochemical model in IORSim was developed as there was a need to model rock fluid 

interactions from the point of injection to production. Rock fluid interactions could be one or all of 

the following: (i) dissolution/precipitation that could change porosity, permeability and/or 

wettability, (ii) ion exchange to model fluid-clay interactions (iii) surface complexation to model 

changes in surface potential and streaming potential in sandstones and/or chalk. The latter 

interactions most likely can explain water weakening effects observed in chalk reservoirs, see (Minde 

and Hiorth 2020). The geochemical model calculates the thermodynamic properties of the aqueous 

species using the same approach as (Johnson, Oelkers et al. 1992), which is based on the work by 

(Helgeson and Kirkham 1974, Helgeson and Kirkham 1974, Helgeson, Kirkham et al. 1981, Aagaard 

and Helgeson 1982). This approach allows calculation of thermodynamic properties from 0 to 1000C 

and 1 to 5000 bar. Although the calculations can be done at a large range of temperatures there is a 

limit on the salinities, typically this approach is more uncertain when the salinity is more than twice 

the seawater. However, the applications we are most interested in are to describe the chemical 

reactions that happens when seawater or low salinity water is injected into the reservoir and then 

this approach should be well inside the limits of the theory. The other strength with the approach 

used by Helgeson, is that it is quite easy to extend to ion exchange and surface complex interactions. 

Surface complex interactions are needed to model smart water effects (Hiorth, Cathles et al. 2010), 

and surface chemistry effects in sandstones (Revil, Pezard et al. 1999, Revil, Schwaeger et al. 1999). 

Theory 

In this section we will explain some basic theory behind the approach suggested by (Johnson, Oelkers 

et al. 1992). One important point is that the aqueous chemistry in a brine is very different from fresh 

water (or low salinity brines). The physical picture is that ions in a brine are always surrounded by 

other ions, thus the thermodynamical activity is different from the ion concentration. To determine 

the thermodynamic activity, one needs to solve a set of mathematical equations. The 

thermodynamic activity is typically a fraction of the total ion concentration and is needed in order to 

predict solubility of minerals, pH, ion exchange etc.  

In Table 1 the result of a typical geochemical calculation is shown. We have specified the total 

concentration of the ions (Na, Mg, Ca, K, SO4, Cl, HCO3), pressure and temperature, and then the 

concentration of the major dissolved species can be predicted. If we look at e.g., the total 

concentration of SO4 we observe that 52% exists as the SO4
2- component, 3% as CaSO4

0, 26% as 

MgSO4
0, 19% as NaSO4

-, and 0.6% as KSO4
-. We normally use the term “basis specie” to mean the free 

ion and secondary specie (or complexes) for the association between an anion and cation (e.g., 

MgSO4
0, NaSO4

-). Furthermore, it is the concentration of the basis specie SO4
2- that is important for 

predicting solubility of minerals e.g., formation of anhydrite (CaSO4 mineral), and not the total 

concentration. Thus, if the concentration of Na was increased or decreased it would affect the 

solubility of anhydrite. Another important example is the solubility of gold (Au), gold makes a 

complex with Cl (AuCl) and therefore gold is much more soluble in waters containing chlorine. 

Understanding how the water composition affects solubility and rock fluid interactions in general is 

therefore of great importance with respect to ore deposits and a great deal of efforts has been made 

to measure and model the ion-ion reactions.  
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Table 1: Distribution of major dissolved species in sea water, the ion pairs are usually termed complexes. The 

calculation is done at 130C and a pressure of 8 bars 

Ion Molality 
(Total) 

Free Ion 
(percent) 

Me-SO4 
Pair 
(percent) 

Me-HCO3 

Pair 
(percent) 

Me-CO3 

Pair 
(percent) 

Na+ 0.48 99 1 0.04 0.006 

Mg2+ 0.054 86 13 0.6 0.4 

Ca2+ 0.010 90 9 0.6 0.1 

K+ 0.010 98 12 - - 

 

Ion Molality 
(Total) 

Free Ion 
(percent) 

Ca-anion 
Pair 
(percent) 

Mg-anion 

Pair 
(percent) 

Na-anion 

Pair 
(percent) 

K-anion 

Pair 
(percent) 

SO4
2- 0.028 52 3 26 19 0.6 

HCO3
- 0.0024 76 3 14 8 - 

CO3
2- 0.00027 9 7 72 12 - 

Cl- 0.56 100 - - - - 

 

When simulating geochemical reactions in transport codes, like in IORSim, the traditional way of 

doing it is to transport only the total concentration of the chemical species. As an example, in the 

case of SO4 we only transport one component, and not SO4
2-

, CaSO4
0, MgSO4

0, NaSO4
-, KSO4

-  etc. To 

obtain the (thermodynamic) activity of sulphate or any other ion in solution, we assume that the 

solution is in equilibrium with all the complexes in solution and perform a calculation. The result of 

this calculation is like the one shown in Table 1. This approach is similar to most geochemical 

software packages, and also what is done in PHREEQC (Parkhurst and Appelo 1999).  

Note that even if we obtain the activity of the basis species from equilibrium calculations, the 

interactions between the rock, oil or a gas phase is not in equilibrium. It is only the interactions that 

takes place in the water phase that is in equilibrium. 

Mathematical formulation  
IORSim calculates the new total concentration in a block from equation (33), then the geochemical 

solver determines the thermodynamic activities by solving a set of equations. To make these 

calculations more understandable we will specify to a specific chemical system. In the following the 

total concentration 𝑐𝑗 is calculated from the first term in equation (35), thus the total concentration 

depends on the time step and flux.  

Calcite and dolomite in distilled water  
In order to describe the geochemistry when calcite (CaCO3) and dolomite (MgCa(CO3)2) equilibrates 

with distilled water, we choose a basis set (this set is not unique): H+, Ca2+, Mg2+, HCO3
-, H2O. The 

activity of H2O is usually set to a specific value (we will put it equal to 1 in the following). The 

secondary species can then be expressed as a linear combination of this basis set: 
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(1) 

   
For each of the reactions above there is a corresponding law of mass actions with a known 

dissociation constant. Using the law of mass action we can write down mathematical equations for 

all the reactions in equation (1): 

  

(2) 

Note that we use the symbol 𝑚𝑖 for the basis species, and 𝑛𝑖 for the secondary species, the activities 

are related to the concentrations in the following way 

  

(3) 

where 𝑚𝑖 is the molar concentration of ion 𝑖, 𝛾𝑖  is the corresponding activity coefficient, å𝑖 is the 

effective diameter of the species in angstrom, 𝑍𝑖  is the valence of the i’th  species  or  complex. 𝐴(𝑇) 

and 𝐵(𝑇) are functions that depend on the temperature (Helgeson, Kirkham et al. 1981): 
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(4) 

𝑡 is the temperature in °C, and 𝐼𝑜 is the ionic strength given by: 

 

(5) 

Nb and Nc is the number of basis species and complexes respectively.  Usually the total 

concentrations of the basis species are known prior to any dissolution or precipitation, except for the 

H+ concentration. The H+ concentration can be found by requiring that the solution has no net charge 

i.e: 

  

(6) 

Conservation of the mass of a species is given by the following equation: 

𝑐𝑗 = 𝑚𝑗 + ∑ 𝜇𝑖𝑗𝑛𝑖
𝑁𝑐
𝑖=1 .  (7) 

Mineral dissolution and precipitation is usually described by the following rate law: 

∂ci(t)

∂t
=∑𝜉𝑖𝑗

𝑗

𝐼𝑗, 
(8) 

where 𝐴 is the total surface area of the rock, and V is the bulk volume of the rock. We have used the 

following form of the flux 𝐼𝑗: 

𝐼𝑗 =
A

V
𝑠𝑔𝑛(1 − Ω𝑗) (𝑘1

′𝑒
−
𝐸1
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)
+ 𝑘2

′ 𝑒
−
𝐸2
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)
𝑎𝐻) |1 − Ω𝑗

𝑚|
𝑛
, 

  = 𝑠𝑔𝑛(1 − Ω𝑗) (𝑘1𝑒
−
𝐸1
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)
+ 𝑘1𝑒

−
𝐸2
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)
𝑎𝐻) |1 − Ω𝑗

𝑚|
𝑛
, 

 

 

(9) 

Where the rate constants, 𝑘1, and 𝑘2 are redefined to include the factor 𝐴/𝑉, to have the unit of 

mol/liter/second,  𝜉𝑖𝑗 is the stoichiometric matrix which relates the number of moles of a mineral to a 

basis species (e.g. when one mol of dolomite dissolves, one mol of calcium, one mol of magnesium 

and two moles of carbonate is released into the bulk solution) . Ωj is the saturation index of mineral j, 
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and is a function of the activity of the basis species. By discretizing equation (8)  we can determine 

the change in the aqueous concentration of the basis species during one time step1: 

ci(t + Δt) − ci(t) = Δt∑𝜉𝑖𝑗
𝑗

𝐼𝑗(t + Δt), 
(10) 

Combining this equation with equation (7) we find: 

ci(𝑡) =  𝑚𝑖(t + Δt) + ∑ 𝜇𝑖𝑗𝑛𝑖(t + Δt)
𝑁𝑐
𝑖=1 − Δt∑ 𝜉𝑖𝑗𝑗 𝐼𝑗(t + Δt),  (11) 

The natural variables in this equation are the activities of the basis species, however to avoid 

negative activities in the Newton iterations, we change variables from 𝒂𝑖 → log10 𝒂𝑖.  

Ion exchange and surface complexes  
The next step is to add ion exchange reactions and surface complexes to equation (11), this is done 

quite simply by extending the set of complexes defined in (2) to also include complexation with a 

surface and introduce a new basis specie X−, e.g. 

Na − X ⇌ Na+ + X−  , 

 Ca − X2 ⇌ Ca2+ + 2X− , 
Mg − 𝑋2 ⇌ Mg2+ + 2X− .  

  

(12) 

Surface complexes are also introduced in a similar way but then one must also introduce an equation 

that describes the conservation of charge, the Grahame equation (Israelachivili 1985)  

 

(13) 

Where 𝜀 is the permittivity constant for a brine, calculated using the same approach as (Johnson, 

Oelkers et al. 1992), and 𝜀0 is the permittivity of vacuum. 𝐸0 is a new basis specie representing the 

surface potential, 𝐸0 = 𝑒
−𝐹𝜓/𝑅𝑇, where 𝐹 is Faradays constant, 𝑅 is the ideal gas constant and 𝑇is 

the absolute temperature, and 𝜎 is the surface potential defined as the sum of all the surface 

complexes 

 

(14) 

For more details see (Hiorth, Cathles et al. 2010) and (Revil, Pezard et al. 1999).  

Explicit Diffusive Layer Calculation 

 
1 If we want to find the equilibrium solution (i.e. whenΔ𝑡

→ ∞ we do this by choosing dolomite and calcite as 

basis species instead of Mg, and Ca. This makes it possible to do equilibrium calculations in one step. 
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Figure 2: An illustration of the distribution of ions close to a charged surface, x is the distance from the surface 

and 𝑚𝐵 is the bulk concentration (far from the charged surface) of an ion. If the surface is negatively charged a 

positive ion will have a higher concentration close top the surface. The right figure illustrates how a negative 

ion (sulphate) can adsorb onto the surface and change surface charge. 

IORSim also has the ability to calculate the composition in the diffusive layer. We have implemented 

the model presented in (Borkovec and Westall 1983). In this model one calculates the composition of 

the diffusive layer close to a charged surface. The calculation is done by introducing the surface 

excess 

Γ𝑖 = ∫ 𝑚𝑖
𝐵(𝑒−𝑍𝑖𝐹𝜓(𝑥)/𝑅𝑇

∞

𝑋𝑑
− 1)dx. 

(15) 

Here 𝑚𝑖
𝐵 means the concentration of a basis species or a complex.   𝑋𝑑is the location of the outer 

Helmholtz plane (Borkovec and Westall 1983). The concentrations of ions in the diffusive layer can be 

calculated by multiplying the equation above with the specific surface area, 𝑆, of the rock (with the 

unit of 𝑚2/liter) 

𝑚𝑖
Γ ≡ 𝑆Γ𝑖 ≡ 𝑔𝑖𝑚𝑖

𝐵, where 

𝑔𝑖 ≡ −
√𝜅𝑠

4𝐹
𝑠𝑔𝑛(𝐸0 − 1)𝑓𝑖, 

𝑓𝑖 ≡ ∫
𝐸−𝑍𝑖 − 1

[𝐸2∑ 𝑚𝑖
𝐵(𝐸−𝑍𝑖 − 1)𝑖 ]

1
2

𝑑𝐸 

1
𝐸0

1

. 

(16) 

 

 Although the mathematics is slightly complicated, and one must evaluate the integral in 

equation(16) , the resulting equations fits nicely into the formulation we have already introduced. It 

turns out that the only modification we must do is to multiply all concentrations in equation (11) 

with 1 + 𝑔𝑖. The Grahame equation defined in equation (13) is now replaced by 

∑𝑍𝑖𝑚𝑖
Γ

𝑖

= 𝜎, 

. 

(17) 

Where 𝜎 is the surface charge defined in equation (14). 
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Algorithm for solving the geochemical system 
In order to determine how the solution chemistry is changed during one time step, equation  

(2),(3),(5),(6), and (11) has to be satisfied2. In principle, all equations could be solved simultaneously 

using Newtons method, however by trial and error we have found that the most stable method is to 

solve these equations in two separate steps: 

1. Equation (11) is solved by using Newtons method, but the ionic strength and activity 

coefficients are kept constant 

2. When equation (11) has converged, the ionic strength and activities are updated and 

equation (11) is solved again until the ionic strength and activity coefficient do not change. If 

explicit diffusive layers are used, we update the integrals defined in equation (16).  

3. If charge balance is a constraint e.g. when the H+ concentration is unknown, the H+ 

concentration is also updated by a secant step in the same loop where the ionic strength and 

activity coefficients are updated. This is usually done in the initialization step where H+ is 

unknown, after the initialization step the total H+ concentration is calculated and after that, 

we constrain the H+ concentration by requiring mass balance (equation (11)).  

One might think that an optimization to the code would be to include the ionic strength and activity 

coefficient dependency on the basis species in equation (11). This is rarely done, because the 

associated overhead when calculating the Jacobian makes this actually slower (Bethke 1996).  

Geochemical Model in IORSim  
In IORSim it is possible to define new interactions that are not initially present, this is done by including 

a file ‘ions.txt’ in the run catalogue. If the keyword HKF is given, the geochemical solver uses the HKF 

EOS to calculate the log K values. The units and the symbols are the same as those given in the appendix 

of (Johnson, Oelkers et al. 1992). If the keyword ANA is given, the geochemical solver calculates the 

log K directly based on the formula 

log𝐾 = 𝐴1 + 𝐴2𝑇 +
𝐴2
𝑇
+ 𝐴3 log 𝑇 +

𝐴4
𝑇2
. 

. 

(18) 

𝐴1…4 is given as input, if to few is given the rest is assumed to be zero. The input is quite flexible as 

illustrated below. The species are read in before the simulation is started and added to the data base, 

ions that are not used in the simulation are simply removed from the database.  

#BASIS_SPECIES 

#Name a0 Mw DeltaG DeltaH S a1 a2 a3 a4 c1

 c2 omega  

#name a0 mol_weight (if ANA is used)  

#ACETATE 

ACE- 5 59.04 /HKF -88270 -116160 20.6 7.7525 8.6996

 7.5825 -3.1385 26.3 -3.86 1.3182 /  

/end 

SECONDARY_SPECIES    

# DeltaG DeltaH S a1 a2 a3 a4 c1 c2 omega 

# ANA = a0 + a1 * T + a2/T + a3 * logT + a4/T^2 

NaX = X- + Na+ / ANA 0. / 

 

2 We have not included equations that describes surface complexation, this will basically yield one additional 

equation (the Grahamme equation), which relates surface charge to surface potential. 
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CaX2 = 2X- + Ca+2 / ANA -0.8 / 

MgX2 = 2X- + Mg+2 / ANA -0.6 / 

KX = X- + K+ / ANA -0.7 / 

BaX2 = 2X- + Ba+2 / ANA -0.91 / 

SrX2 = 2X- + Sr+2 / ANA -0.91 / 

BgCl- = Bg+2 + 2.34Cl- / HKF -17450 -18270 34.1 5.2088

 4.9399 3.8015 -2.9832 9.8168 -1.6698 -0.03 / 

GCO3Bg+ = GCO3- + Bg+2 / ANA .2 / 

/end 

EXCHANGE_SPECIES 

#ion exchange species 

#name  

Z+   

/end 

SECONDARY_SPECIES 

#dissociation of acetic acid 

ACEH = ACE- + H+ /HKF -94760 -116100 42.7 11.6198 5.218

 2.5088 -2.9946 42.076 -1.5417 -0.15 / 

#ion exchange with sulphate and chloride – not standard 

SO4Z2 = 2Z+ + SO4-2 / ANA  -0.8 / 

ZCl   = Z+ + Cl- /ANA -0.7/ 

/end 

MINERAL_PHASES 

# HKF = mol_volume DeltaG DeltaH S a1 a2 a3 a7 

# ANA = mol_volume a0 + a1 * T + a2/T + a3 * logT + a4/T^2 

WITHERITE = Ba+2 + HCO3- - H+ /HKF 45.81 -278400  -297500 26.8 21.5

 11.06 -3.91 / 

#K-FELDPAR = Al+3 + 2H2O - 4H+ + K+ + 3SiO2 /HKF 108.87 -895374 -

949188 51.13 76.617 4.311 -29.945 

/end 

 

The ‘.geocheminp’ file contains information about the rock, which minerals are present, amount of 

exchange sites and amount of surface complexes.  Currently the specific surface area for the minerals 

(Sg) is not used, it enters in the parameter k_1 and k_2 (see equation (9))3.  

Table 2: Parameters in the rate keyword, the specific surface area is not used 

Rate 
Parameter 
number 

Parameter description Symbol Unit Example 
value 

1 Name of mineral Text No unit Calcite 

2 Amount present in rock  mol/kg rock 38 

3 Specific surface area SA m2/liter rock 1 

4 Log activity of mineral log 𝑎 Dimensionless 0 

5 Activation energy 𝐸1 J/mol 37.8e+3 

6 Neutral rate constant 𝑘1 mol/s 3.43e-2 

 
3 The original idea was to include a specific surface area for each mineral and use this to calculate 

changes in permeability, in the same way as for the silicate model. 
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7 Activation energy 𝐸2 J/mol 8.4e+3 

8 Acidic rate constant 𝑘2 mol/s 1.11E+03 

9 Potens in rate constant 𝑚 Dimensionless 1 

10 Potens in rate constant 𝑛 Dimensionless 1 

 

Table 3: Parameters in the iexchange keyword, note that other exchange sites can be defined in the ‘ions.txt’ 

file 

iexchange 
Parameter 
number 

Parameter description Symbol Unit Example 
value 

1 Name of specie Text No unit X 

2 Amount present in rock  mol/kg rock 0.01 
 

Table 4: Parameters in the complex keyword. If the size of diffusive layer is entered, extended diffusive layer 

calculations are used. These calculations are more time consuming and does not always converge  

Line complex 
Parameter 
number 

Parameter 
description 

Symbol Unit Example 
value 

1 1 Numerical method Text No unit method 

1 2 Which method used integer No unit 1 or 2 

2 1 Specific surface area Text No unit s_area 

2 2 Value of surface area SA mol/kg rock 1000 

2 3 
(optional) 

Size of diffusive layer D nm 10 

3 1 Name of surface 
complex 

Text No unit GCa 

3 2 amount of complex  C Sites/nm2 2 
 

Below is an example of the keywords in the rate file. 

rate 

# rate = (k_1*exp(-Ea/Rg)(1/T-1/298.15)+k_2*exp(-Ea/Rg)(1/T-

1/298.15)*(1-SI^n)^m          

#mineral   mol/kg Sg   log_af   logEa_1   k_1         logEa_2 k_2

         n m 

calcite  38.454 1 0 37.8e+3 3.43E-02 8.4e+3

 1.11E+03 1 1 

magnesite 0.0 1 0 60e+3 .7E-08       0.0 0.0  1

 1 

anhydrite 0.0 1 0 60e+3 7E-08  0.0 0.0  1 1 

barite  0.0 2 0 30.8 1.11E-03 0.0 1.11E-03 1

 1 

/end 
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iexchange 

# mol/liter 

X 0.01 

/ end 

complex 

# method = 0 surface potential is set to zero 

# method = 1 (default) solves Grahame equation 

method 1 

#specific surface area m^2/L pore volume 

#if explicit diffusive layer calculation the size of diffusive layer  

#in nm must be given 

# s_area size of diffusion layer 

# 1000 10  

s_area 1000  

#Name sites/nm^2 

GCa 2 

GCO3 2 

/ end 

 

The solution data are defined in input file < CASE>.trcinp. In the example below, two water solutions 

are defined by using the *SOLUTION keyword. 

 

*solution solution0 

    pH   9         

    Ca   0.15     

    Mg   0.021885 

    Cl   2.5   

    HCO3 1e-8   

    Na   1.1428   

    SO4  1e-8    

    K    0.0073    

    Ba   0.00184  

    Sr   0.0085 

 

*solution solution1 

   pH       1.    

   Ca      0.013  

   Mg      0.0445 

   Cl      0.525  

   HCO3    0.002  

   Na      0.45   

   SO4     0.024  

   K       0.01   

   Ba       0     

   Sr       0     

 

After this, the keyword 

 

*MODELTEMPLATE Comp1 (say) 

defines a named area in the reservoir which is chemically initialized as follows: 
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The keyword  

*COMP solution0 

defines that IORSim will use solution0 as initial water composition for this region.  

The keyword 

*CHEMFILE ratefile 

defines the name of a rate-file for this region (format for ratefile described above) 

Each solution defined with keyword *SOLUTION, can also be defined as injected water composition 

for different wells in the reservoir. 

 

The silicate model in IORSim 

Theory 

Sodium silicate polymerization is a complex process that is affected by several factors such as pH value 

temperature, silica concentration, and salt impurities. Stavland et al. (2011) conducted an 

experimental study to describe the gelation of sodium silicate by an empirical relation 

𝑡𝑔𝑒𝑙 = 𝜉𝑒
𝛼𝐶𝑆𝑖𝑒𝛽𝐶𝐻𝐶𝑙𝑒𝛾√𝐶𝐶𝑎𝑒

𝐸𝛼
𝑅𝑇 ( 19 ) 

where 𝐶𝑆𝑖 is the concentration of Krystazil 40 (sodium silicate) in wt%, 𝐶𝐻𝐶𝑙 is the hydrochloric acid 

concentration of 2M HCL solution in wt%, 𝐶𝐶𝑎 is the solutions’ calcium concentration in ppm and T is 

the temperature in Kelvin. The empirical parameters 𝜉 = 8.75 10−10, 𝛼 = -0.6 1/wt %, 𝛽 -0.7 1/wt %, 

and 𝛾 = -0.1 1/√𝑝𝑝𝑚 were estimated during a series of sodium silicate polymerization experiments. 

The numerical implementation (mass conversation) requires a reformulation of Equation ( 19 ) in which 

the concentration of sodium silicate is in balance with the sodium silicate gelation rate (Hiorth, Sagen 

et al. 2016). The sodium silicate polymerization/generation of the immobile gel species 𝐶𝑔𝑒𝑙 is 

proportional to the rate of sodium silica 𝐶𝑆𝑖 consumption 

𝑑𝐶𝑔𝑒𝑙

𝑑𝑡
= −

𝑑𝐶𝑆𝑖
𝑑𝑡

= 𝑘𝐶𝑆𝑖
𝑛  ( 20 ) 

where a simple power-law describes the sodium silicate consumption using the variables k and n. Since 

the sum of 𝐶𝑆𝑖and 𝐶𝑔𝑒𝑙  is constant, Equation ( 20 ) can be rewritten as 

−
1

𝑘𝐶𝑆𝑖
𝑛 ⋅
𝑑𝐶𝑆𝑖
𝑑𝑡

= 1 ( 21 ) 

Integrating over time and replacing the integral variables by concentration leads to Equation ( 24 ) 

∫ 𝑑𝑡 = ∫ −
1

𝑘𝐶𝑆𝑖
𝑛 ⋅
𝑑𝐶𝑆𝑖
𝑑𝑡

𝑑𝑡
𝑡𝑔𝑒𝑙

0

𝑡𝑔𝑒𝑙

0

 ( 22 ) 

 

∫ − 
1

𝑘𝐶𝑆𝑖
𝑛 𝑑𝐶𝑆𝑖  = [

𝐶1−𝑛

𝑘(𝑛 − 1)
]
𝐶𝑜

𝐶𝐶

𝐶𝑜

 ( 23 ) 

 

𝑡𝑔𝑒𝑙 =
𝐶0
1−𝑛

𝑘(1 − 𝑛)
[(
𝐶

𝐶𝑜
)
1−𝑛

− 1] ( 24 ) 
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As the sum of the sodium silicate and immobile gel remains constant, C= 𝐶𝑜 − 𝐶𝑔𝑒𝑙 is assumed. 

Moreover, sodium silicate requires a minimum threshold concentration of X wt% to polymerize. Using 

1/k = 𝜉𝑒𝑥𝑝(𝛽𝐶𝐻𝐶𝑙)𝑒𝑥𝑝(𝛾√𝐶𝐶𝑎)𝑒𝑥𝑝 (
𝐸𝛼

𝑅𝑇
) as the kinetic reaction constant, a threshold sodium silicate 

concentration of X = 0.3 wt%, and a kinetic law exponent n of 4, Equation ( 19 ) and Equation ( 24 ) are 

combined to obtain a modified description of sodium silicate gelation.  

𝑡𝑔𝑒𝑙 = ξ𝑒
β𝐶𝐻𝐶𝑙𝑒γ√𝐶𝑆𝑖𝑒

𝐸α
𝑅𝑇 [

𝛼𝐶𝑜
1−𝑛

1 − 𝑛
[(1 −

𝑋

𝐶𝑜
)
1−𝑛

− 1]] ( 25 ) 

 

Where 𝛼 =100. Equation ( 25 )  ensures mass conservation by coupling the sodium silicate consumption 

to the sodium silicate gelation rate.  

After defining the sodium silicate gelation, the impact of sodium silicate precipitation on permeability 

reduction is derived. Stavland et al. (2011) conducted coreflooding experiments to demonstrate that 

the injection of sodium silicate decreases the permeability in a range of 104 to 105. As sodium silicate 

is injected into porous media and polymerizes, the precipitated immobile silica reduces the available 

pore space occupied by the oil and water phase. A widely accepted mathematical description that 

relates porosity and permeability is the Kozeny-Carman model 

𝑘 =
ϕ

α𝑣τ𝑆𝑝
2 ( 26 ) 

where k is the permeability in Darcy, φ is porosity, α= 9.869 −13 is a conversion factor to convert 

between Darcy and SI units, v is a shape factor, τ is tortuosity and 𝑆𝑝 is the specific surface area per 

pore volume (𝑆𝑝  =𝐴𝑝/𝑉𝑝) in 1/m. Assuming that the sodium silicate polymerization occurs inside the 

pore throats, the tortuosity and porosity remain constant throughout the permeability reduction 

process. Consequently, the relation of initial permeability 𝑘𝑖 and the modified permeability 

𝑘𝑚 becomes proportional to the relation of the initial specific surface area per pore volume 𝑆𝑝,𝑖 and 

the modified specific surface area per pore volume 𝑆𝑝,𝑚 

𝑘𝑚
𝑘𝑖
= (

𝑆𝑝,𝑖

𝑆𝑝,𝑚
)

2

= (
1

1 + 𝑌𝑆𝑤
𝜌𝑤
𝜌𝑆𝑖

𝑆𝑆𝑖
𝑆𝑝,𝑖

)

2

 ( 27 ) 

 

where Y is the concentration of the polymerized sodium silicate in fraction, 𝜌𝑤 is the water density in 

kg/m3 and 𝜌𝑆𝑖 is the sodium silicate density in kg/m3. When assuming a spherical sodium silicate 

particle shape, the specific sodium silicate surface area is calculated by dividing the sodium silicate 

surface area (4πr2) by the sodium silicate particle volume (4/3πr3). Using Equation ( 26 ) to express 

𝑆𝑝,𝑖 and inserting into Equation leads to 

𝑘𝑚
𝑘𝑖
= (1+

3𝑆𝑤𝜌𝑤
𝑟𝑆𝑖𝜌𝑆𝑖

√
α𝑣τ𝑘𝑖
ϕ𝑖

)

−2

 (28 ) 

 

Assuming τ =3, a geometrical shape factors v = 2, 𝜌𝑤 as 1000 kg/m3 and 𝜌𝑆𝑖 as 2650 kg/m3, and sodium 

silicate particle radius of 10 nm, the final permeability expression yields into 
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𝑘𝑚 = (1 +  275.5 𝑌 𝑆𝑤   √
𝑘𝑖
ϕ𝑖
)

−2

𝑘𝑖 ( 29 ) 

 

Sodium silicate model in IORSim 

 

Sodium silicate model implementation in IORSim 

 

IORSim uses five species to ensure the implementation of numerical sodium silicate simulations: 

Sodium silicate, hydrochloric acid, calcium, immobile gel, and mobile gel.  

• Sodium silicate, hydrochloric acid and calcium are dissolved species inside the water phase  

• The mobile gel species reflects the immediate generation of sodium silicate aggregates. The 

nanosize aggregates can be transported a significant distance within the reservoir. 

• The immobile gel species represents the sodium silicate that precipitated inside the porous 

network and reduces the permeability. 

 

 

 

#-- Selection of IORSim model -> here Silicate 

*MODELTYPE SILICATE 

#-- Enummertatiom of species 

*SPECIES Silica 

*SPECIES MobGel 

*SPECIES HCl 

*SPECIES Ca 

*SPECIES ImMobGel 

 

While IORSim uses  the host simulator  to specify and calculate the well injection rates, IORSim defines 

the species concentrations. The below listed example initially assumes the injection of fresh water in 

which only calcium is present (200ppm). After 31 days, 4 wt% sodium silicate, 3 wt% HCL, and 20 PPM 

calcium are injected. In both cases, an injection temperature of 25°C is assumed.  

 

 

 

 

#-- Wellname 

Inj 

#-- NtimE 
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2 

#--Time C_Si C_MobGel C_HCL C_Ca C_ImMobGel Injection_temperature 

 0 0 0 0 200 0 25 # Injection of water (0 days, 200 ppm Ca at 25C) 

31 4 0 3 20 0 25 #Injection of Si and HCl (31 days,4 wt% Si, 3wt% HCl, 

20 ppm Ca at 25C) 

Sodium silicate model implementation in Eclipse 

IORSim calculates the impact of sodium silicate precipitation on fluid flow by interpolating between 

different SATNUM sets. By default, IORSim uses 12 SATNUM input sets. Consequently, the keywords 

SWOF (water/oil saturation functions versus water saturation, SGOF (gas/oil saturation functions 

versus gas saturation), and SPECROCK (Rock specific heat data) need to be defined by an equal amount 

(12) of input sets. To allow the processing of 12 relative permeability/capillary pressure curves, the 

TABDIMS (table dimensions) specifications need to be adapted. 

Sodium silicate illustration example 

Figure  to Figure  illustrate the injection of sodium silicate into an idealized reservoir. While the 

injection of water leads to an efficient oil recovery from the high permeable zones, the impermeable 

layers remain unwept (Figure ). Once sodium silicate is injected into the reservoir, the sodium silicate 

accumulates inside the high permeable layers (Figure ). The injected sodium silicate precipitates 

around the temperature front, as displayed in Figure . As a result of the sodium silicate precipitation, 

the permeability decreases (Figure ). Consequently, the injected water imbibes into the low permeable 

zones, displaces the oil, and increases the oil production (Figure ). 

 

 
Figure 1: Initial permeability distribution. A layered reservoir model with high permeable zones 

(2000mD)  
and low permeable zones (50 mD). 

 

 
Figure 2: Water saturation distribution before silicate injection. The layered reservoir properties 
lead to an efficient oil recovery from the high permeable zones while the less permeable zones 
remain unwept.  
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Figure 3: Silicate injection into the reservoir.  
The injected silicate accumulates inside the high permeable layers 
 

 
Figure 4: Temperature distribution. As a result of the water injection, the temperature decreases 
in the vicinity of the injection well.  
 

 
Figure 5: Sodium silicate precipitation. The injected sodium silicate precipitates around the 
temperature front.  
 

 
Figure 6: Water saturation distribution after silicate injection. The precipitated sodium silicate 
reduces the permeability and causes water diversion. The impermeable zone layers are swept.  

 

Numerical methods  

Since the geochemical calculations are separated from the host simulator, IORSim reads the Eclipse 

output files to construct an segregated cell structure. Static grid properties such as grid dimension, cell 

sizes, cell transmissibilities, permeability, and porosity are retrieved from root.egrid and root.init. 

Moreover, the global fluid flow (phase volume flow, formation factors, well flow rates, phase 

saturation, and phase volume) is read at each timestep from root.rft and root.unrst. While the files 

mentioned above are standard Eclipse output files, IORSim requires the creation of one additional 

input file. Depending on the selected geochemical module, root.trcinp defines the initial and injected 

species concentrations. Once IORSim has calculated the advective species transport and geochemical 
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reactions (dissolution, precipitation, surface charge change, etc.), the impact of geochemical reactions 

on the fluid flow is communicated via updated relative permeability and capillary pressure curves 

(root.satnum). Depending on the magnitude of chemical reactions, IORSim assigns each Eclipse cell a 

Satnum value closest to predefined relative permeability/capillary pressure input data. The iterative 

process of starting and pausing the Eclipse and IORSim simulation is continued until the simulation is 

completed. After the completion of the simulation, the IORSim results are merged into root.egrid to 

allowing post processing programs such as Eclipse FloViz and ResInsight to be used. 

 

Fully implicit reservoir simulators typically use a Newton-Raphson solver, in which the primary 

variables are stored inside a matrix and simultaneously solved over iterations. While the fully implicit 

numerical scheme is stable and tolerates large time steps, the handling of the global matrix requires 

high computational effort. In addition to the chemical species transport calculations, IORSim computes 

non-linear geochemical reactions over iterations at each time step. Compared to conventional flow 

simulation applications, reactive transport problems cause significantly larger computational times 

and convergence problems. To avoid handling an unstable global matrix, IORSim divides the reactive 

species balance calculations into a sequence of local systems. The principle of the approach is sketched 

in Figure 8. 

 

Figure 8. Species balance equation in IORSim. 

Before starting the species balance calculations, IORSim reads the host simulation results to detect the 

flow pattern. Once the flow paths are decrypted, the neighbouring cells are aligned into a sequence of 

upstream and downstream cells. The arising cell alignment is similar to a streamline simulation 

approach, in which the species balance solution is divided into an iterative string of 1D problems. As 

the flow pattern is detected, the sorting algorithm loops through the flow pattern to identify the 

injection cells. Starting from the injection cells, where the species concentrations are defined through 

boundary conditions, the species balance from a timestep n to a timestep n+1 can then be expressed 

as following  

𝑉𝑖
𝑛𝐶𝑖

𝑛 + 𝐹𝑖𝑛𝐶𝑖𝑛
𝑛+1Δ𝑡 = 𝑉𝑖

𝑛+1𝐶𝑖
𝑛+1 + 𝐹𝑜𝑢𝑡𝐶𝑖

𝑛+1Δ𝑡, (30) 

where V denotes the total fluid volume, ci is the cell species concentration, 𝐹𝑖𝑛 is the total volume 

influx from the neighboring (upstream) cells of cell 𝑖, cin is the average species concentration of the 

upstream cells, and  𝐹𝑜𝑢𝑡 is the outflux from grid cell 𝑖. The species balance notation neglects a 

source/sink term for simplicity.  

𝐹𝑖
𝑖𝑛𝐶𝑖

𝑖𝑛(𝑡 + Δ𝑡)Δ𝑡 𝐹𝑖
𝑜𝑢𝑡𝐶𝑖

𝑜𝑢𝑡(𝑡 + Δ𝑡)Δ𝑡

𝑉𝑖𝐶𝑖 𝑡 + Δ𝑡 − 𝑉𝑖𝐶𝑖 𝑡

Known 𝑐𝑖𝑛
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As the cell influx 𝐹𝑖𝑛cell outflux 𝐹𝑜𝑢𝑡, and species influx concentration cin are known, the only unknown 

𝐶𝑖
𝑛+1 could be directly solved from Equation (30). However, as temporal and spatial discretizations 

tend to introduce mass balance errors, IORSim takes the volume balance of the host simulator into 

account  

Vi
n+1 + FoutΔ𝑡 = Vi

n + FinΔ𝑡 (31) 

where the cell outflow term 𝐹𝑜𝑢𝑡 is eliminated by inserting Equation (31) into Equation (30) 

(Vi
n + FinΔt)C1

n+1 = Vi
nCi

n + FinCin
n+1Δ𝑡. (32) 

The purpose of IORSim is the calculation and visualization of geochemical reactions. Equation (32) is 

therefore extended by coupling a geochemical reaction term to the species balance 

𝐶𝑖
𝑛+1 =

𝑉𝑖
𝑛𝐶𝑖

𝑛 + 𝐹𝑖𝑛𝐶𝑖𝑛
𝑛+1Δ𝑡

𝑉𝑖
𝑛 + 𝐹𝑖𝑛Δ𝑡

−[Δ𝑡𝑛+1 (1 − 𝜖)𝑉𝑖
𝑛𝑟(𝐶𝑖

𝑛) + Δ𝑡𝑛+1 𝜖𝑉𝑖
𝑛+1𝑟(𝐶𝑖

𝑛+1)]⏟                                
geochemical reaction term

 (33) 

where 𝜖 is ∈ [0,1] and 𝑟𝑖(𝐶𝑖) denotes non-linear geochemical reactions such as dissolution, 

precipitation and/or other chemical reactions. 

Equation (33) is sequentially calculated for the upstream cells. The species transport is solved implicitly 

without calling a linear solver routine, whereas the geochemical reactions terms are stored inside a 

local cell matrix and solved over iterations. Besides a fully implicit numerical scheme, IORSim integrates 

an explicit numerical scheme and an adaptive numerical scheme. The numerical scheme is controlled 

by the Courant Friedrichs Lewy (CFL) condition, which is defined as  

𝐶𝐹𝐿 =
𝑣 Δ𝑡

𝑥
, (34) 

where 𝑣 is the flow velocity, Δ𝑡 is the time step size, and Δ𝑡 is the cell length. The CFL condition states 

that the distance, which a fluid moves during one timestep, must be shorter than the length of the 

cells to obtain a stable explicit solution. Consequently, a CFL maximum value of 1 defines the threshold 

value until explicit schemes converge, while implicit schemes tolerate larger CFL values. Although 

IORSim utilizes a CLF maximum value of zero to achieve a fully implicit numerical scheme, the IORSim 

user can define an arbitrary CFL threshold value until an explicit scheme is applied. In the case of the 

explicit numerical scheme, the reactive species balance equation can be summarized as follows 

 

𝐶𝑖
𝑛+1 =

(𝑉𝑖
𝑛+1 − Δ𝑡𝐹𝑖𝑛)𝐶𝑖

𝑛 + Δ𝑡𝐹𝑖𝑛𝐶𝑖𝑛
𝑛

𝑉𝑖
𝑛 + 𝐹𝑖𝑛Δ𝑡

− [Δ𝑡𝑛+1 (1 − ϵ)𝑉𝑖
𝑛𝑟(𝐶𝑖

𝑛) + Δ𝑡𝑛  ϵ𝑉𝑖
𝑛𝑟(𝐶𝑖

𝑛+1)]. 

(35) 
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The sequential solution method in IORSim 

 Background and need 

The figure below illustrates a one-layer reservoir simulation case.  The red border is the outer border 

of the reservoir. The black borders indicate the flow connections between each grid cell. The arrows 

indicate the direction and the size of the flow rates between two neighbour cells. The reservoir is seen 

from above, and the position of the wells is indicated by red dots. 

IORSim solves the species concentrations in each cell at each time step of the simulation. Each cell has 

been initialized with concentration values, and at each time point in the simulation, a certain species 

concentration is injected into the well cells from the wells (red dot). 

 

 

Figure 9. A schematic sketch related to solving the species balance equations in IORSim. 

In addition to solving the transport equations of species across each connection of two and two grid 
blocks, the geochemical equations must also be included. The resulting system of equations is a 
coupled system of all grid blocks, where coupling to the non-linear geochemical equations is 
performed at each grid cell.  The “normal” way of solving such a system, would be to put everything 
up in a huge matrix with lots of off-diagonal elements, and solve at each time step. Since the 
geochemical equations are non-linear, several iterations of this matrix solution would have to be 
performed. For such a large coupled non-linear system of equations, the CPU time would be huge, 
and in addition there is great risk of having convergence problems.   
 
In the next section, we shall see that a much more practical and efficient method exists for solving 
this set of equations, introducing a so-called sorting algorithm for the grid cells.    
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 Sorting algorithm for water species 

The sequential method principle applied in IORSim is both simple and very computationally efficient. 
It is based on “localizing” the solution problem, instead of solving the total coupled non-linear equation 
system of cell concentrations simultaneously. 
 
To understand the solution principle, it is useful to look at the “localized” problem, illustrated in the 
figure below. In the figure, Fin is the total water inflow for this grid cell, cin is the average species 
concentration for all the inflow elements.  The inflow elements consist of all well inflow completions 
connected to this grid cell, plus all the inflow connections from the neighbour grid cells. The outflows 
Fout are similarly defined.  All the Fin s and Fout s are known from Eclipse.  If we assume that cin is also 
known, we observe that there is only one unknown quantity in this system, namely the unknown local 
concentration ci. Hence this local system consists of only one unknown variable ci, and the resulting 
non-linear equation is quite straightforward to solve efficiently by iteration (geochemical module).  
Now the question arises, can the cin s be assumed to be known in advance? The answer is yes, if we 
have sorted the grid cells in in such a way that all the cin s have been solved first. 

 
 
      

 

Figure 10. The mass balance of one grid cell in IORSim. 

To achieve this at a certain time step, we loop through all the flows and the belonging pair of grid cells 

interconnected by this flow. Dependent on the flow direction for this connection, we interchange the 

sequence of the two blocks so that the upstream block relative to the flow, is listed before the 

downstream block. This procedure is repeated for all the flow connections in the reservoir. As a result, 

we obtain a grid cell sequence with the property that all inflow cells relative to a specific cell, are listed 

before the cell itself. See figure below. 

 
 
 
 

 

Figure 11. Solving a sequence of grid cell in IORSim. 
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As seen in the figure above, we obtain a one-dimensional sequence of cells, where all the flows are 

pointing in one direction, right, say. If we now start solving the localized problem at the outmost left 

side, we see that this cell can be easily solved, since the only inflow here must be coming from in 

injection well, and hence is a known quantity. Going to the next cell, we similarly see that it also can 

be solved, since the inflow from the left side was just calculated as outflow from the previous cell.  In 

that way, we can continue trespassing from left to right, until all the grid cells are solved.    

To illustrate that the method is valid for 2D and 3D cases, we choose a quarter of five-spot reservoir 

as an example. In the figure below, the blocks have been enumerated in a natural way, but the sorting 

algorithm works no matter which enumeration is chosen. We observe that the cell sequence  

1, 2, 3, 4, 5, 6, 7, 8, 9 does the job of having inflow cells being calculated before the cell itself. We also 

observe that the sequence 1,4, 7, 2, 5, 8, 3, 6, 9 does the job. 

The algorithm will pick one of them, dependent on how the cell-connection data structure has been 

set up 

 

Figure 12. A quarter of fivespot example of a grid cell sequence in IORSim. 

 

We now look at the case with reversed flow directions:

   

Figure 13. Reversing the flow 

 

In this case the sequence   9, 8, 7, 6, 5, 4, 3, 2, 1  and the sequence  9, 6, 3, 8, 5, 2, 7, 4, 1 do the job. 
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 Sorting algorithm for partitioning species 

The sequential method for water species has been extended to handle species which exist in all three   

phases water, oil and gas. In the previous section, we described how the sorting algorithm tests on the 

direction of the water phase and sort the grid cells such that inflow cells are solved before the 

downstream cell. If the water and oil phases flow in different directions, we must choose which phase 

we take into account with respect to inflow. If we sort the cells according to the water phase, this 

means that the water flow terms are taken implicitly as before (inflow terms calculated first). Since 

water inflow cells are calculated first, and water and oil flow in opposite directions, the oil inflow cells 

will be calculated last. This again means that the inflow oil terms must be calculated using the old 

concentrations, i.e. integrated explicitly in numerical sense. The water flow terms are integrated 

implicitly (new concentration values) as before. Since we now have deduced that one of the phases 

must be handled explicitly in the case that water and oil are flowing in opposite directions, the question 

about numerical stability now arises. It is clear that such a solution can become numerically unstable, 

especially if the flow of the countercurrent phase is huge. 

Actually, further stability analysis shows that the total solution is stable provided the countercurrent 

phase flow is not too big. The solution is numerically stable when: 

        ∆t 
𝐹𝑤−𝐾∗𝐹𝑜

(𝑠+(1−𝑠)∗𝐾)
 ≥ −𝑉     (36) 

where Fw is water rate, Fo is oil rate, K is the K-value between the phases for this specie. This shows 

that when Fw > K*Fo, sorting should be done by the water inflow, else it should be done by oil inflow.   
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Separate grid refinement 

In IORSim, the tracer calculation is performed on a separate grid which may be finer than the original 

Eclipse grid. The grid is shortly denoted a “tracer refined grid”. The purpose of the tracer grid is merely 

numerical. Since the tracer pulses in well-to-well tracer tests are quite narrow, it is very important to 

have a good numerical resolution of the pulses propagating through the reservoir. In fact, one 

application of the tracer grid refinement option is to obtain an exact solution of the convection-

diffusion equation. By entering a specific value of the physical diffusion in the input file, the user may 

refine the tracer grid until the simulated tracer pulse no longer is changed when the grid is refined.  If 

a zero value is entered for the physical dispersion, the solution will always become sharper when the 

grid is refined, meaning that it is not possible to strictly obtain a unique solution. This is actually the 

normal procedure in reservoir simulation, where usually no physical dispersion is specified, and a fixed 

number of grid blocks is applied. The shape of the tracer pulse is in this case determined only by the 

numerical dispersion corresponding to the chosen grid size. Below, the method of tracer grid 

refinement is described. 

 Description 

N_lgr 

I1 I2 J1 J2 K1 K2 NXref NYref NZref 

. . . . . . . . . 

. . . . . . . . . 

I1 I2 J1 J2 K1 K2 NXref NYref NZref 

 
This defines species grid refinement. The first argument is an integer that defines the number of areas 
that will be refined. If the first argument is 0, no grid refinement is performed. 

If the first argument (N_lgr) is a positive integer, N_lgr x 9 integers must be given. In these groups of 9 
integers, the six first (I1, I2, J1, J2, K1, K2) denote the boundary of the refined block, with lower and 
upper x-direction grid blocks given first, then lower and upper y-direction grid blocks and lower and 
upper z-direction grid blocks given at last. The last three numbers in the group of 9 integers denote 
the degree of refinement in x-direction, y-direction and z- direction, respectively. The last three 
integers must be odd numbers (NXref, NYref, NZref = 1,3,5,..). A number 1 gives the original grid block 
size, i.e. no refinement. 

Adjacent grid refinement regions are allowed, e.g. cases as illustrated in Figure 1a and b. The adjacent 
regions can have equal degree of refinement or different degrees of refinement.  

 
Figure 14 Grid refinement in IORSim. Adjacent independently refined regions are allowed 
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 Velocity calculation between refined cells 
Figure 1.1 illustrates an Eclipse well block. The red arrows represent the original flow rates read from 

Eclipse. The red filled circle in the middle of the block, represents the well completion flow rate, 

positive sign for a producer, negative sign for an injector. 

 

Figure 15. Black arrows: Refined velocities within the grid cell.  Red arrows: Velocities in Eclipse 

 

The figure above illustrates a well grid block in Eclipse.  The red arrows indicate the flowrates of Eclipse, 

the black arrows indicate the tracer refined velocities (flowrates)  

The black arrows are the calculated tracer refined velocities. We will show how the these refined 

velocities (flow rates) are calculated based on the original flow field read from Eclipse. The calculation 

is done separately for each of the three phases, water, oil and gas. Assume that we want to do the 

calculation at a specific time point        in the Eclipse simulation. At this time point there is a specific 

build-up or build-down of net mass in the block, depending on the difference between the flow rates 

going into the block (red arrows), and the completion flow rate (red filled circle) going out (assumed 

positive flow).  For each phase and at any point in space within the block, the following mass 

conservation equation applies:    
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At this specific point in time,          has a certain value dependent on the compressibility of the fluid at 

this time. Also, we assume that the compressibility build-up of mass is evenly distributed within the 

Eclipse block. Hence          may be assumed constant. Likewise, we may assume that the mass is equally 

spaced within the block itself, so that 𝜌  is only a function of time. Hence we may write: 

 

             

 

Now, we investigate the compressibility term further to quantify it based on the information Eclipse 

has supplied for this specific well block. On the one hand, the mass build-up in the block must be: 
  

             

 

 

On the other hand, by considering the total mass balance in the block, we must have: 

  

            

 

The compressibility may be expressed: 

 

             

 

The velocity equation to be solved becomes: 

 

            

 

By introducing the permeability K within the block and neglecting the viscosity which is assumed to be 

constant, we obtain: 
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In IORSim, the pressure equation is first solved. Finally, the velocities are retrieved.   Note that K is 

dependent on the local direction of integration. In IORSim Kx, Ky and Kz are indirectly calculated by 

applying the Tx, Ty and Tz transmissibilities, which are retrieved directly from Eclipse. 

The vertical and horizontal well situations are illustrated in the figures below: 

 

 

 

 

 

 

 

 

 

 

Figure 16. Refining a well block for a vertical well 

 

 

 

 

 

 

 

 

 

 

Figure 17. Refining a well block for a horizontal well 
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Figure 18. Refining a well block for a horizontal well 

 

 

 

Below, a real well situation is iillustrated, together with a subsequent grid refinement realization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Sketch of a real horizontal well 
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Figure 20. The grid representation of the horizontal well 
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The tracer model in IORSim 

 

 Ideal tracers and partitioning tracers 

By decoupling the tracer and fluid flow it is possible to state and solve the tracer problem based on 

previously solved and stored reservoir simulator runs. This approach allows for fast tracer simulations 

with execution times of 1-5% of the corresponding reservoir simulation, and the possibility to re-state 

and solve the tracer problem without re-solving the flow. Multiple tracer scenarios can therefore be 

simulated very fast. The sequential method for water species has been extended to handle species 

which exist in all three   phases (water, oil, gas). For each specie, the distribution between the phases 

is governed by an equilibrium relation.  

If we assume that partitioning among the phases is an instantaneous process a conservation equation 

for an arbitrary partitioning tracer component 𝑞 may be written as 

 

𝜕

𝜕𝑡
( ∑ 𝜑

𝑖=𝑜,𝑔,𝑤

𝑆𝑖 𝐾𝑖
𝑞
𝐶𝑞)+ ∇ ⋅ ( ∑ 𝒗𝑖𝐾𝑖

𝑞
𝐶𝑞

𝑖=𝑜,𝑔,𝑤

)− ∇ ∙ ( ∑ 𝜑𝑆𝑖𝑫𝑖
∗ ⋅ ∇(𝐾𝑖

𝑞
𝐶𝑞)

𝑖=𝑜,𝑔,𝑤

) = 0 

 
 
 
(37)  

Here, partitioning is described by the coefficient 𝐾𝑖
𝑞
= 𝐶𝑖

𝑞
/𝐶𝑞, where 𝐶𝑖

𝑞
 is the concentration of 𝑞 in 

phase 𝑖 and 𝐶𝑞 is the concentration in the primary  phase. 𝐶𝑞 is the primary variable solved for in the 

equations. 

Neglecting the dispersion term in the above equation and simplifying the notation a little bit, we obtain 

the discretized tracer equation, actually solved in IORSim. 

The accumulation term in the discretized equation becomes: 

                                    𝑚𝑡𝑜𝑡 = 𝑉𝑐𝑒𝑙𝑙(𝐾𝑤 C Sw 𝜑  + 𝐾𝑜C So 𝜑 + 𝐾𝑔C Sg 𝜑)    (38) 

where  𝐾𝑤, 𝐾𝑜,  𝐾𝑔 are the K-values for each phase for this specific specie. Note that the K-values in 

general can be functions of temperature, pressure and also composition. C is the primary 

concentration, which is solved for numerically in IORSim. The actual definition of  𝐾𝑤, 𝐾𝑜,  𝐾𝑔 will 

depend on the definition of the primary concentration C (which phase etc.)  C is calculated for all grid 

cells at each time step of the simulation.   

Note that the equilibrium of tracers (and in general species) between the phases, is assumed to be 

instantaneous. The K-values Kw, Ko, Kg may be dependent on P, T and composition.  Partitioning 

species in IORSim may be useful for instance when CO2 is present in water, oil and gas. When for 

instance Ko = Kg = 0, the tracer (specie) is ideal (also denoted passive) and sticks only to the water 

phase. Other ideal tracers may be pure oil tracers (Kw = Kg = 0) or gas tracers (Kw = Ko = 0). 

 

The relations between C and each phase concentrations are 

   𝐶𝑤 = 𝐾𝑤  𝐶       𝐶𝑜 = 𝐾𝑜 𝐶      𝐶𝑔 = 𝐾𝑔 𝐶     (39) 

For each grid cell, the total transport equation for the species then becomes: 

∆𝑚𝑡𝑜𝑡
∆𝑡

=
∆(𝑉𝑐𝑒𝑙𝑙𝐾𝑤 C Sw 𝜑  + 𝑉𝑐𝑒𝑙𝑙𝐾𝑜C So 𝜑 + 𝑉𝑐𝑒𝑙𝑙𝐾𝑔C Sg 𝜑)

∆𝑡
= 
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∑ (𝐾𝑤,𝑗𝑢𝑝𝐶𝑗𝑢𝑝 𝑄𝑤,𝑗𝑢𝑝 + 𝐾𝑤,𝑗𝑢𝑝𝐶𝑗𝑢𝑝 𝑄𝑤,𝑗𝑢𝑝 + 𝐾𝑤,𝑗𝑢𝑝𝐶𝑗𝑢𝑝 𝑄𝑤,𝑗𝑢𝑝)𝑓𝑙𝑜𝑤
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

   (40) 

The last term is summed through all grid cell boundaries (flow connections). The grid cell jup is the 

upstream grid cell relative to the connection. This mass conservation equation is solved implicitly in 

IORSim.  

Single well chemical tracers used for SWCTT tests 

Single-well chemical tracer tests are based on injection of an ester into the reservoir.  Some of the 

ester hydrolyses during a shut-in period, and subsequent production of the ester and the alcohol 

produced during shut-in yield tracer production curves that can be used to find residual oil saturation. 

Commonly utilized esters in SWCTT tests are propyl formate and ethyl acetate. Symbolically we can 

write the hydrolysis reaction as 

 

𝑅1𝐶𝑂𝑂𝑅2 +𝐻2𝑂 ⇄ 𝑅2𝑂𝐻 + 𝑅1𝐶𝑂𝑂𝐻   
     (ester)           (water)    (alcohol)   (acid)    (41) 

 

Ester is typically a partitioning tracer and alcohol is typically an ideal (passive) tracer. By just injecting 

and back producing ester, or even adding an ideal tracer, would only result in a back production of the 

ester and the ideal tracer at the same time, because of injection and back-production in the same 

production well. The clue of the SWCTT method is that alcohol (ideal tracer) is produced in the chemical 

reaction during the pause between injection and back production. Since the ester and alcohol are 

starting at the same point in space, they will arrive at different times.  This time difference can be used 

to calculate the residual oil saturation in the near well zone.  The formulae used is: 

𝑆 =
(𝑡2−𝑡1)

(𝑡2+𝑡1(𝐾−1))
          (42) 

 

 

 

 

 

 

 

 

 

 

Figure 21. Schematic sketch of the SWCTT situation 
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Figure 22. Illustrating the reaction period (no injection) and back production 

 

The process of injection ester and back producing ester and alcohol, is illustrated in the figures on 

previous page. 

The ester undergoes partitioning between water and oil, the saturations vary in time and space, the 

ester and alcohol components are subjected to varying phase velocities and are subjected to physical 

dispersion varying with the phase velocities. We can now write the transport-reaction equation for 

ester as 

𝜕

𝜕𝑡
( ∑ 𝜑

𝑖=𝑜,𝑔,𝑤

𝑆𝑖 𝐾𝑖
𝑒𝐶𝑒) + ∇ ⋅ ( ∑ 𝒗𝑖𝐾𝑖

𝑒𝐶𝑒

𝑖=𝑜,𝑔,𝑤

) − ∇ ∙ ( ∑ 𝜑𝑆𝑖𝑫𝑖
∗ ⋅ ∇(𝐾𝑖

𝑒𝐶𝑒)

𝑖=𝑜,𝑔,𝑤

)

= − ∑ 𝜑

𝑖=𝑜,𝑔,𝑤

𝑆𝑖 𝐾𝑖
𝑒 𝜅𝑖

𝑒 𝐶𝑒 

(43) 
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where 𝜅𝑖
𝑒 is the hydrolysis reaction rate in phase 𝑖.  𝜅𝑖

𝑒 is zero for oil and gas and equals the hydrolysis 

rate of ester (𝜅) in water. For alcohol we can write 

𝜕

𝜕𝑡
( ∑ 𝜑

𝑖=𝑜,𝑔,𝑤

𝑆𝑖 𝐾𝑖
𝑎𝐶𝑎)+ ∇ ⋅ ( ∑ 𝒗𝑖𝐾𝑖

𝑎𝐶𝑎

𝑖=𝑜,𝑔,𝑤

)− ∇ ∙ ( ∑ 𝜑𝑆𝑖𝑫𝑖
∗ ⋅ ∇(𝐾𝑖

𝑎𝐶𝑎)

𝑖=𝑜,𝑔,𝑤

)

= ∑ 𝜑

𝑖=𝑜,𝑔,𝑤

𝑆𝑖 𝐾𝑖
𝑎  𝜅𝑖

𝑒 𝐶𝑒
𝑀𝑎
𝑀𝑒

 

(44) 

 

Note that the 2-component system of equations in general would have to be solved simultaneously. 

In our case, however, the equations are only 1-way dependent.  Hence we solve the ester equation 

first, and then the alcohol equation can be solved afterwards, once the ester concentration  𝐶𝑒 has 

been determined. 

 

Figure 23. The back produced tracer signals (alcohol and ester) 
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The discretized well model in IORSim 

A production well in Eclipse can either be simulated in crossflow mode or not. If the crossflow option 
is turned on, the flow in vicinity of the well may look as in the figure below: 
 

     

 

Figure 24. Crossflow in well, arising due to different reservoir layers 

 
 
As shown in the figure, water, oil and gas may flow through the well from one reservoir layer to 
another. This implies that in some completion zones the flow will go out from the well, while in other 
zones the flow may go into the well, although the well is a producer which implies that the total 
production is positive. In IORSim there are also two options, either to include crossflow or not. If no 
crossflow is assumed, the well is treated quite simply, just calculating and summing together, the 
species production contribution from each layer, and calculating the total species production and the 
average species concentration in the production well.  
 
In the case of crossflow, a more complicated well model is needed in IORSim. As seen in the figure 
below, the well is in this case discretized by imposing extra internal pipe cells along the well. These 
pipe cells are incorporated in the total grid system of IORSim, as any other grid cells. The flowrate for 
each pipe connection (boundary between pipe cells) are calculated by propagating from the toe of the 
well, adding together flow contributions for each completion zone. The result is that the varying 
internal flow between individual pipe cells is calculated and stored in grid cell connections, which are 
between two pipe cells or between the pipe cell and the adjacent reservoir layer holding the 
completion.  
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Figure 25. Crossflow in the well, the representation in the IORSim grid system 

 
 
The result is that the transport of species can be simulated throughout the well, and that a total 
production rate and a produced concentration can be calculated for the well.  
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Examples 
In this section we describe two field scale applications of IORSim for silicate and low salinity option. 

Silicate model 

This model, called SILICATE-1, with small modifications was used in the IORSim course of 10.12.2020. 

The model contains one injection well and two production wells in a reservoir with two high 

permeable zones. All model details can be found in the SILICATE-1 files in the IORSim directory.  

The sodium silicate solution is injected for 30 days after 300 days of pure water flooding. A picture 

showing the oil saturation after slightly more than 1.5 years  can be seen in fig. 26. The location of 

the immobile gel as well as silicate/gel concentration in two adjacent grid blocks, outside and inside 

the geled area is seen in fig. 27. 

 

  

Figure 26. Model with two high permeable layers used for silicate injection simulation 
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Figure 27. Silicate gel as seen from above in high permeable bottom layer. Silicate concentration 

history for two adjacent grid blocks, left; outside immobile gel, right; inside. 

 

The simulated improved oil recovery for the silicate injection compared pure waterflood is shown in 

fig. 28. Cumulative oil production has increased by 90,000 Sm3 (7% ) at end of simulation (2000d = 

5.5y). Total water production was reduced by 320,000 Sm3 (17.5%). 

 

 

Figure 28.  Silicate model oil recovery with blue curves compared with regular flood in red/pink 

curves. 
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Low salinity model 

In the low salinity model included here adsorbed magnesium concentration is assumed to correlate 

with the reduction in residual oil. Alternatives in IORSim are any ionic species in water, or adsorbed, 

as well as pH.  

The injection water contains a higher magnesium concentration than the formation water. As has 

been explained IORSim also includes a geochemical reactions module.   

Data files including all details can be found in the LOWSAL-1 files in the IORSim directory. 

Adsorbed magnesium concentration after 16y of waterflooding is illustrated in fig. 29. 

 

Figure 29. Adsorbed magnesium concentration after 16 years of flooding 

The corresponding oil saturation is shown in fig. 30. 

 

Figure 30. Oil saturation for Low Salinity flood model 

 

A comparison with regular waterflood is shown in fig. 31.  

(In fig. 31 the low salinity case has the name LSAL-03H and the regular flood is named LSAL03E2-ECL.) 
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Figure 31.  Low salinity flood with blue curves, regular flood with red/pink curves. WOPR is oil rate, 

WOPT is cumulative oil and WWIR is injection rate. 

About 12% more oil was simulated being produced with low salinity flood in this model. 

 
 
 
 
 
 
 

User guide for the IORSim script 
The main motivation for IORSim was to add geochemistry based IOR methods to field simulation 

workflows without altering the reservoir simulator. To achieve this, the communication between 

IORSim and the reservoir simulator operate via interface-files. The current version of IORSim is 

developed to cooperate with Eclipse100. However, with some modifications, other reservoir 

simulators that allow communication via files can cooperate with IORSim.  

IORSim is executed in forward or backward mode. In forward mode, the Eclipse run completes before 

IORSim reads the Eclipse output and perform the calculations. In backward mode, Eclipse only 

executes one timestep before it is paused. IORSim then reads the timestep output and prepare an 

interface-file for Eclipse with updated keywords (such as SATNUM). IORSim is then paused and 

Eclipse resume to read the updated interface-file.  

A python script is developed to handle the tasks of pausing and resuming Eclipse and IORSim, 

checking that output files a properly flushed, and preparing interface-files. The script can be 

executed in graphics mode (GUI), on the command line (terminal), or imported and used by other 

python scripts. The capabilities of the script include 

• Run IORSim in backward, forward, and single mode 

• Convert and merge IORSim and Eclipse restart files to make the results viewable in ResInsight 

• Check IORSim input keywords  
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• Progress-bar with estimated remaining simulation time 
 

The GUI version of the script includes these additional features 

• Plot Eclipse and IORSim well-data, with an option to compare two cases  

• Edit Eclipse and IORSim input files 

• View log files 

• Integrated searchable IORSim user guide 
 
A running version of Eclipse and IORSim is required by the script, and the script is compatible with 

Linux and Windows. The latest version of the script can be downloaded from 

github.com/janlv/IORSim_GUI/releases/latest.  

The GUI window 
The Run-, Case- and Days-fields of the toolbar are the input variables of the script. The Run-field is a 

dropdown-menu with four different running modes: Forward, Backward, Eclipse, and IORSim. The 

Case-field is a dropdown-menu of all imported cases, and the Days-field is the total simulation time. 

The green triangle starts the simulation, and the red square allow the user to stop the simulation 

before the total simulation time is reached. The Compare-field is a dropdown-menu similar to the 

Case-field that allows the user to compare plots from two different cases.    

The main view of the GUI is the plot window and the Eclipse and IORSim plotting menus. This allows 

the user to follow the evolution of selected well-data during the simulation. A maximum of two plots 

can be view simultaneously. If more than two Y-axis boxes or more than two Wells boxes are 

selected, the last selected box is automatically unselected.  

The Edit-menu opens an editor for Eclipse or IORSim input files with syntax highlighting and a search 

function. The View-menu opens a log file viewer showing the terminal output of Eclipse or IORSim 

runs, or the progress of the python script. The editor and log viewer are displayed in the plot 

window. The Plot option at the top of the View-menu brings back the default plot view.    

The Edit-menu also gives access to a Settings window where the most important entry is the location 

of the executable IORSim program. This needs to be specified before running the first simulation. The 

remaining options are described in section 1.1.5. 

The Help-menu opens a searchable IORSim user guide in a separate window 

A status-bar showing the progress of the simulation and the estimated remaining time is located at 

the bottom of the GUI window. 

 

https://github.com/janlv/IORSim_GUI/releases/latest
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Figure 3: The graphical user interface (GUI) version of the IORSim script. 

Running modes 
Four different running modes are implemented and available from the Run dropdown-list: 1) 

Forward, 2) Backward, 3) Eclipse, and 4) IORSim 

In Forward mode, Eclipse is first executed from start to finish to create restart (UNRST) and well-data 

(RFT) files. Then, IORSim reads the output from Eclipse and add tracer data, geochemical 

concentration values, or other relevant values in an Eclipse formatted restart file (FUNRST).  

In Backward mode, Eclipse executes only one timestep before IORSim reads the Eclipse output and 

updates the flow variables. This allows IORSim to update the SATNUM values used by Eclipse in the 

next timestep. During a backward run, the Eclipse output files (UNRST and RFT) need to be checked 

to ensure they are properly flushed before Eclipse is paused and IORSim can resume.  

The Eclipse and IORSim running modes simply execute Eclipse and IORSim as stand-alone 

applications. The IORSim mode can only be executed if Eclipse output files are present in the case-

folder.  

Case files 
A minimal IORSim case consists of an Eclipse input file (.DATA-file) and an IORSim input file (.trcinp-

file). If the geochemical option is used a chemistry-file must be included using the *CHEMFILE 

keyword in the IORSim input file. The Eclipse input file may also include different additional files. The 

case-files for a specific case are organized in separate case-folders under ‘IORSim_cases’ in the 

running directory. The path and name of the main case directory can be changed from the Settings 

window (Edit -> Settings).  
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For a DATA-file named Case.DATA the following files are copied to the folder CASE if they exist 

• The Eclipse input file, Case.DATA 

• The IORSim input file, Case.trcinp 

• All files ending with .inc, .dat, .grdecl, .egrid, .vfp, or .sch 

• All files included by the *CHEMFILE keyword in the trcinp-file 
Note that the filename match is case-insensitive, also if executed under Linux.  

Import and run an existing case 
Import an existing case using File -> Import case… to bring up a file-navigation window where you can 

locate the .DATA-file of the case you want to import. After import, the name of the new case will 

appear in capital letters in the Case dropdown-menu in the toolbar. The running mode is selected 

from the Run dropdown-menu. A backward run is automatically selected if the READDATA keyword is 

present in the DATA-file. A Forward run is the default for all other cases. For forward-cases, Eclipse 

and IORSim can also be run in single mode by choosing Eclipse or IORSim from the Run menu. 

For a backward case, the duration of the simulation is given in the Days field of the toolbar. For a 

forward-case, the total simulation time, given by the TSTEP keyword in the DATA-file, is displayed in 

the Days field without the option to edit it directly. However, the Eclipse input file can be opened for 

editing via the Edit menu, and the simulation time modified by searching for TSTEP and changing the 

value.  

The first time the script is used you need to give the location of the IORSim executable under Edit -> 

Settings. Clicking the green go-button will also bring up the Settings-window shown in Figure 4 if the 

IORSim program is missing. Locate the IORSim executable using the Open-button.  

If Eclipse is properly installed, Eclipse can be executed by the default eclrun macro. If this should fail, 

the full path of the eclrun macro must be given in Settings. The remaining Setting-options are 

discussed later. 

Start the simulation by clicking the green triangle in the toolbar. The progress-bar at the bottom 

shows the estimated remaining simulation time and displays the current timestep of the simulation.  

By default, the view area shows evolving plots of the well-data from both Eclipse and IORSim output-

files. Which values to plot are selected in the IORSim and Eclipse plotting menus to the left of the 

view area. The View menu also gives access to log-files showing the printed output from Eclipse, 

IORSim or the python script.  

Settings 
The settings window is available at the bottom of the Edit-menu, or via the shortcut Ctrl+s.  

IORSim program 
The location of the executable IORSim program is the only setting that require input from the user 

before running the first simulation.  

Eclipse program 
The default value ‘eclrun’ require that the Path environment variable includes the full path of the 

ecl/macros-folder. Otherwise, the full path of the eclrun executable must be specified using the Open 

button. 
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Input options 
If checked, a simple check of the keywords in the IORSim input file is performed before the 

simulation starts. This will give a more useful feedback than if the IORSim application stops due to 

missing keywords or keywords in the wrong order.  

 

Figure 4: The settings window of the IORSim GUI script 

Output options 
IORSim outputs reservoir data in an ASCII restart file (with the extension FUNRST) that follow the 

Eclipse format. The data can be viewed in the FloViz program that is part of the Eclipse installation. 

However, some prefer to use ResInsight for reservoir visualization, but ResInsight can only import 

binary (unformatted) Eclipse restart files. In addition, Eclipse and IORSim data are saved in separate 

files which makes it a bit cumbersome to get all the reservoir data available in the same view.  

By checking the convert and merge boxes, the script first converts the ASCII output to binary output 

and then merge the original Eclipse and converted IORSim restart file into one unified restart file. By 

default, the original files are deleted after a successful convert and merge to save disk space. 

Uncheck the two delete-boxes to keep the original restart files.  

Backward options 
During a backward run it is important to check that the Eclipse restart file (the UNRST file) and the 

well-data file (the RFT file) are completely flushed before Eclipse is paused. Disabling these checks 

might speed up the simulation, but it will make backward runs less stable and prone to stop 

prematurely.  

The option ‘Suspend all child processes’ means that all sub-processes of a running processes are 

suspended when the main process is suspended. This option is always on and unable to uncheck 

since it improves the stability of backward runs. However, the option can be disabled by giving the -

alive_children argument to the command line version of the script (see Section 0)       
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Using the script on the command line (non-GUI version) 
The script can also be executed on the command line by providing a path to a DATA-file and the 

simulation duration in days. The different arguments are listed and explained in Figure 5. It is 

recommended to run the GUI version of the script first and locate the IORSim executable in the 

Settings window to avoid specifying the executable on the command line every time the script is 

used.  

 

 

Figure 5 Description of the command line arguments of the IORSim python script. This information is displayed 

if -h is given as an argument to the script  

Using the script as a python module 
The script can also be imported as a python module and used in other python scripts or Jupyter 

notebooks. Figure 6 shows a python script that use the IORSim script to loop over a   

 

 

Figure 6: Possible python implementation that use the IORSim script to loop over a list of case-folders 
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(i) Backward coupling 

(ii) GUI 

(iii) Examples 

i) Conclusion(s) 

The basic concept in IORSim coupling a commercial simulator with a research simulator 

dynamically works well. Thereby the application of common reservoir simulators can be 

extended to IOR processes originally missing in commercial software. 

ii) Future work/plans 

(Work in progress, journal papers in particular) 

Felix publications 

 

 

 

 

 

 

 

 

 

 

iii) Dissemination of results 

(Include testing/implementation by research-/user partners if relevant) 

Presentation IOR Conference 2015 “IORSim – an add on tool to ECLIPSE for fast and accurate simulation of 

multi-phase geochemical interactions at the field scale” Video presentation”  

IOR Conference 2016 publication “IORSim an add on tool to ECLIPSE for simulating IOR processes” A. Hiorth, J. 

Sagen, A. Lohne, J. Nossen, J.L. Vinningland, E. Jettestuen and T. Sira,  

“IORSim - A Simulator for Fast and Accurate Simulation of Multi- phase Geochemical Interactions at the Field 

Scale”, ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery, 10.3997/2214-

4609.201601882 Hiorth, Aksel; Sagen, Jan; Lohne, Arild; Nossen, Jan; Omekeh, Aruoture Voke; Stavland, Arne; 

Haukås, Jarle; Sira, Terje.  

Simulating gelation of silica for in-depth reservoir plugging using IORSim as an add on tool to ECLIPSE. PEA EOR 

Forum; 2016-09-14 - 2016-09-14 Hiorth, Aksel; Sagen, Jan; Lohne, Arild; Nossen, Jan; Omekeh, Aruoture Voke; 

Stavland, Arne; Haukås, Jarle; Sira, Terje.  
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Simulating gelation of silica for in-depth reservoir plugging using IORSim as an add on tool to ECLIPSE. IEA EOR 

2016; 2016-09-19 - 2016-09-21 A. Hiorth, J. Sagen, A. Lohne, A. Omekeh, J. Nossen, J. Haukås and T. Sira.   

Simulation of Sodium Silicate Water Diversion Using IORSim, IOR 2017 - 19th European Symposium on 

Improved Oil Recovery A. Hiorth 

Hiorth, Aksel; Nødland, Oddbjørn Mathias; Stavland, Arne; Jettestuen, Espen; Aursjø, Olav; Vinningland, Jan 

Ludvig; Nossen, Jan; Sagen, Jan; Sira, Terje: Simulation Tools for Predicting IOR Potential on the Norwegian 

Continental Shelf. IOR NORWAY 2018, April 2018. 

IORSim - Modelling of advanced IOR processes coupled to commercial simulators, VIII November Conference - 

Improved Oil Recovery Session, 2020, Brazil, B. Antonsen 

IORSim – adding more physics and chemistry to reservoir simulators, IOR Norway 2021, A. Hiorth 

IORSim - modelling of advanced IOR processes coupled to commercial simulators. IOR Session 25th November 

in November Virtual Conference 2020 PUC-Rio, A. Hiorth, J.L. Vinningland, J. Sagen, J. Nossen, T. Sira, S. 

Groland, B. Antonsen 

IORSim – a simulation tool for improving IOR processes by adding geochemistry with fast tracer tracking to 

industrial reservoir simulators, SPE Virtual Workshop: Tracer Technology - Improving Asset Value, March 2021, 

J. K. Sveen (IFE) 

IORSim – Adding more physics and chemistry to reservoir simulators. IOR Norway 2021, UIS 26-28 April, A. 

Hiorth, J. sagen, J. Nossen, A. Lohne, J. L, Vinningland, B. Antonsen, E. Brendsdal, T. Sira 

IORSim – version 1.0 (2021) 
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