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1 Executive summary

The main deliverable in this project is the lattice Boltzmann solver BADChIMP. This
code is developed for modeling fluid flow on the pore scale. The code can handle general
geometries, non-Newtonian fluid rheologies and multi-phase systems. The code has been
developed with the goal of providing a flexible environment for trying out new methods
and add new physics.

The code for running simulations are uploaded to the IOR repository. The code is in
active development so we will suggested to download it from our github repository1 to get
the most updated version.

This report is to be regarded as a manual for the BADChIMP code. The report
describes the code in sufficient detail to both run standard cases and to begin to add
new lattice Boltzmann models. It is written for students that want to learn the lattice
Boltzmann and to quickly get started with producing results and developing algorithms
for themselves. It is also aimed at researchers that want to simulate fluid flows in porous
media. Some programming experience will be beneficial, but there exist case studies that
can be used as starting points. These can be modified with minimal effort. The report will
also be part of the code repository and will be updated to reflect changes in the code.

There are three major parts in this manual. Chapter 2, Introduction and back-
ground, presents the theory behind the lattice Boltzmann method and should be a good
short overview for students and researchers that want to understand the basics of the
method. If you already are acquainted with he lattice Boltzmann method you could easily
skip this section, although it can be useful to browse through it to get to know our notation.
Chapter 3, Code description and manual, describes the essential parts of the code and
goes through a case study line by line. Chapter 4, Simulation of non-Newtonian rhe-
ologies, describes how to simulate non-Newtonian rheologies using generalized expression
for strain-rate-dependent viscosity.

1You can access it from teh following link https://github.com/eje74/BADChIMP-cpp
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2 Introduction and background

2.1 The Lattice Boltzmann method

The lattice Boltzmann method [9, 13, 15, 14] is historically a generalization of the lattice gas
methods for fluid flow. Later, it was shown that it was a discretization of the Boltzmann
equation. It is the latter derivation that have gained traction in the lattice Boltzmann
community and we will just sketch out how LB is related to the Boltzmann equation.

2.1.1 Boltzmann equation

The Boltzmann equation [5] is given as

∂tf + ci∂if = Ω, (2.1)

where f(t, ~x,~c) is the single-particle distribution function, ~c is the microscopic particle
velocity, and with a collision term Ω which is a function of the distribution functions.
We will also use the notation that ∂t is the partial differential operator with respect to
time, t and ∂i is the partial differential operator with respect to the i’th Caretesian spatial
coordinate, xi. We also note that we will use Einsteins summation convention for repeated
Cartesian indices.

The equilibrium distribution for f is given by the Maxwell-Boltzmann distribution

fMB(~c, ρ, ~u) =
ρ

(2πc2
s)

3/2
exp

(
−|~c− ~u|

2

2c2
s

)
, (2.2)

where cs is the sound velocity, and ρ and ~u are the macroscopic density and velocity,
respectively. In lattice Boltzmann simulations, this is usually the BGK-collision term [4]

Ω = −1

τ

(
f − fMB

)
. (2.3)

The macroscopic quantities are defined through different moments of the distribution func-
tion,

ρ =
∫
f d~c, ρ~u =

∫
~cf d~c, ρθ = 1

3

∫
|~c− ~u|2f d~c. (2.4)

A standard notation for the moment of the distribution of microscopic velocities is

Πi1...in =

∫
ci1 · · · cinf d~c. (2.5)

2.1.2 Macroscopic equations

The macroscopic equations are derived from the Boltzmann equation by integration over
different moments of the microscopic particle velocity coordinates. We will just illustrate

5



the derivations using an example without any body force terms. Here we will use the
integral notation

∫
d3~c as short-hand for

∫
dcxdcydcz. The mass conservation law follows

directly from the definition in the previous section:∫
(∂tf + ci∂if) d3~c =

∫
Ω d3~c = 0

∂t

∫
f d3~c+ ∂i

∫
cif d3~c = 0

∂tρ+ ∂iρui = 0.

The equations for impulse conservation are given by∫
(ci∂tf + cicj∂j) d3~c =

∫
ciΩ d3~c = 0

∂t

∫
cif d3~c+ ∂j

∫
cicjf d3~c = 0

∂tρui + ∂jΠij = 0.

Here, we obtain a second order tensor Πij that we need to determine, which can be ac-
complished using the Chapman-Enskog expansion described in section 2.1.4.

2.1.3 The lattice Boltzmann numerical scheme

The procedure used to to derive the lattice Boltzmann equation from the Boltzmann equa-
tion is quite elaborate, so we will only give an executive sketch of the method with references
to work that will supply the details.

The derivation can is conducted in two steps. First, the continuum of microscopic
velocities is discretizied, so that we are left with an equation for a finite set of velocity
distributions, fα, needed to described the systems. Here, α is just an integer denoting
which microscopic velocity distribution it represents. After this first step we are left with
a coupled system of differential equations. One for each microscopic velocity, that needs
to be integrated in time. The second step is to discretize this integration.

For the first step we need to rewrite and Taylor expand fMB in terms of (u/cs), i.e.,
the low Mach number limit,

fMB(|~u− ~c|) =
ρ

(2πc2
s)

3/2
exp

(
−(~u− ~c)2

2c2
s

)
=
ρ exp

(
− c2

2c2s

)
(2πc2

s)
3/2

exp

(
−u

2 − 2~c · ~u
2c2
s

)
= ρw(c)

(
1 +

~c · ~u
c2
s

+
(~c · ~u)2 − c2

su
2

2c4
s

)
+O

(
(u/cs)

3
)
,

where

w(c) = (2πc2
s)
−3/2 exp

(
− c2

2c2
s

)
.

It is this truncated expansion that is used for the equilibrium distribution in the lattice
Boltzmann simulation. To derive the equilibrium values, one may now use this truncated
expression to obtain the macroscopic variables. Abe [1], and He and Luo [6, 7], described
that, by using Gaussian quadrature, they could rewrite the integrals over ~c, using sums over
a finite sets of microscopic velocities that gave the same lattice structure as the standard
lattice Boltzmann models1. We can see this for ourselves by writing out the expression for

1They had a different approach for handling the time integration. This turned out to be a sub-optimal
solution.
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the equilibrium moments

Πi1...in =

∫
ci1 · · · cinf d~c ≈

∫
ρw(c)ci1 · · · cin

(
1 +

~c · ~u
c2
s

+
(~c · ~u)2 − c2

su
2

2c4
s

)
d3~c. (2.6)

Here, we can write the integral using a polynomial Pi1...in(~c) in ~c, and use Gaussian quadra-
ture to obtain ∫

ρw(c)Pi1...in(~c) d~c =
∑
α

ρwαPi1...in(~cα), (2.7)

where α is an index used to identify the microscopic velocities used in the Gaussian quadra-
ture and wα = w(cα). We only need a finite number of f -distributions to calculate the
integrals. Hence, we do only need to know the evolution of the set of distribution, fα, used
in the Gaussian quadrature scheme. And, from this, we are left with the set of differential
equations,

∂tfα + cαi∂ifα = Ωα, (2.8)

where Ωα = −1/τ(fα − fMB
α ). We also note that the Gaussion quadrature also supply us

with the discrete equilibrium distribution

f eq
α = wα

(
1 +

cαiui
c2
s

+
Qαijuiuj

2c4
s

)
, (2.9)

where
Qαij = cαicαj − c2

sδij . (2.10)

This is the standard expression used for the equilibrium distribution in LB models.This
concludes the first step of the derivation of the LB method.

To begin our second step in the derivation, we note that the left hand side of the
discrete Boltzmann equation, Eq. (2.8), is a ’free streaming’ with velocity cα. Thus, by
integration along this velocity direction over the time interval ∆t we get

fα(t+ ∆t, ~x+∆t~cα)− fα(t, ~x) =

− ∆t

τ

∫ ∆t

0

(
fα(t+ t′, ~x+ t′~cα)− fMB

α (t+ t′, ~x+ t′~cα)
)

dt′.

Using the trapezoidal rule on the right hand side, we obtain

fα(t+ ∆t, ~x+ ∆t~cα)− fα(t, ~x) ≈

− ∆t

τ

(
fα(t+ ∆t, ~x+ ∆t~cα)− fMB

α (t+ ∆t, ~x+ ∆t~cα)

2
+
fα(t, ~x)− fMB

α (t, ~x)

2

)
,

which is an approximation to the integral up to order (∆t)3. In this expression, we have
fα(t+ ∆t, ~x+ ∆t~cα) expressed using fMB(t+ ∆t, ~x+ ∆t~cα) which is an unknown quantity.
To get around this problem, we make a change of variable from fα to

f∗α(t, ~x) = fα(t, ~x) +
∆t

2τ

(
fα(t, ~x)− fMB

α (t, ~x)
)
, (2.11)

so that we end up with

f∗α(t+ ∆t, ~x+ ∆t~cα)− f∗α(t, ~x) = −∆t

τ

(
f∗α(t, ~x)− fMB

α (t, ~x)
)
. (2.12)

The reason why this works is that
∫

Ω d3c =
∫
ciΩ d3c = 0 for isolated systems, i.e., system

without source terms. Hence, the redefinition of f does not change the derived density and
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velocity of the isolated system, and we can find these variables using f∗α instead of fα. We
note that if we introduce mass sources and body forces we will need to add corrections to
the collision terms. In the rest of this report, we will, through a renaming, denote fα for
f∗α. This concludes the second, and last, part of the derivation. Eq. (2.12) is the equation
known as the lattice Boltzmann equation.

2.1.4 Chapman-Enskog expansion

The Chapman-Enskog expansion [5] is a method used to identify which macroscopic equa-
tions are modeled by the Boltzmann equation. This also includes how the parameters,
describing the microscopic interactions, are related to the ones emerging on macroscopic
scales. The Chapman-Enskog method is referred to as an asymptotic method so it is as-
sumed to only show behavior in the long wavelength limit. We also note that the Chapman-
Enskog expansion method does not tell us if the behavior, given by the Boltzmann equation,
actually converges to the identified macroscopic equations.

The expansion is based on the assumption that both differential operators, ∂t and ∂i,
and distributions, f , can be expanded in terms that formally can be written as

∂t = ε∂
(1)
t + ε2∂

(2)
t + · · · , (2.13)

∂i = ε∂
(1)
i + ε2∂

(2)
i + · · · , (2.14)

and
f = f (0) + εf (1) + ε2f (2) + · · · . (2.15)

The ε indicates the influence of the term in the long wavelength limit. Here, terms with
higher powers of ε have less influence than those with lower powers of ε. The goal of the
Chapman-Enskog expansion is to obtain the expression for the terms in the expansion of
f , as function of the macroscopic variables. So that different moments of the microscopic
velocities, for instance Πij , can be expressed as functions of the macroscopic variables and
their partial derivatives. For the lattice Boltzmann method, it is common to apply this
method to the discretize version of the the Boltzmann equation [8, 17].

We will use the LB equation, Eq. (2.12), as an example. The expansion on the left
hand side is found by first applying a Taylor expansion to the left hand side of the LB
equation

fα(t+ ∆t, ~x+ ∆t~cα)− fα(t, ~x) =
∑
n=1

(∆t)n

n!
((∂t + cαi∂i)

nfα) (t, ~x). (2.16)

The tedious part of the derivation is that we need to insert expressions Eqs. (2.13), (2.14),
and (2.15) for ∂t, ∂i, and f , respectively, and then gather the terms with of the same power
of ε. Here, we give these expressions for the three lowest levels of ε’s

O(ε0) : 0

O(ε1) :
(
∂

(1)
t + cαi∂

(1)
i

)
f (0)
α

O(ε2) :
(
∂

(1)
t + cαi∂

(1)
i

)
f (1)
α +

(
∂

(2)
t + cαi∂

(2)
i

)
f (0)
α +

1

2

(
∂

(1)
t + cαi∂

(1)
i

)2
f (0)
α ,

where we have put ∆t = 1 to make them more readable. The right-hand side of the
equation is simpler. First of all, we identify that f eq

α = fMB
α (see Eq. (2.9)) and we get
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that

O(ε0) :f (0)
α − f eq

α

O(ε1) :− 1

τ
f (1)
α

O(ε2) :− 1

τ
f (2)
α .

From the O(ε0), we note that we can put f (0)
α = f eq

α . The important thing to notice here
is that f eq

α is a function of macroscopic variables. By matching the ε terms, we note that
we can express f (1)

α , on the right-hand side, using only f (0)
α , on the left-hand side. This

pattern is general, so that the O(εn), we have that the right-hand side, consists of f ’s up
to order n, while the left-hand side only include f ’s, up to order (n− 1). This shows that
we can, in principle, derive expressions for f , up to any order in ε, using only macroscopic
values. Going through these steps, using the expressions up to and including O(ε2), we
can derive the Navier-Stokes equation as presented in section 2.2.1.

One important expression, from the Chapman-Enskog expansion, used in deriving mod-
els for non-Newtonian flow is the relation between fneq

α = fα−f eq
α and the strain rate tensor,

Eij ,

τ−1fneq
α = −wα

(
Qαij
c2
s

+
Pαijkuk
c4
s

)
ρEij − wα

(
cαi
c2
s

+
Qαijuj
c4
s

+
Pαijkujuk

2c6
s

)
Fi, (2.17)

where Pαijk = cαicαjcαk − c2
s (cαiδjk + cαjδik + cαkδij).

2.1.5 Lattice structures

There are many different lattice structures that can be used in lattice Boltzmann simula-
tions [16]. We will not list them here, but we will point out the requirements that they
need to fulfill.

First of all, the notation used to describe a lattice is on the form DnQm where n is a
number that tells you the number of spatial dimensions of the lattice and m tells you the
number of basis vectors, ~cα.

A basis vector needs the have the property that if you are at a node position ~x then
~x+~cα also needs to be a node position. Finally, the sets of basis vectors, ~cα, and weights,
wα, need to fulfill the following summation rules, also called symmetries, to be able to
simulation Navier-Stokes,∑

αwα = 1,
∑

αwαcαi = 0∑
αwαcαicαj = C2δij ,

∑
αwαcαicαjcαk = 0∑

αwαcαicαjcαkcαl = C4 (δijδkl + δikδjl + δilδjk) ,
∑

αwαcαicαjcαkcαlcαm = 0.
(2.18)

2.1.6 A complete lattice Boltzmann scheme

In this section, we will supply a complete lattice Boltzmann scheme, which later is imple-
mented in section 3.3. The equations being solved are given in section 2.2.1. The scheme
is given by Eq. (2.12),

fα(t+ 1, ~x+ ~cα)− fα(t, ~x) = Ωα, (2.19)

where we have set ∆t = 1. Now, since the system described in section 2.2.1 has both a
mass source term, q, and a body force term, ~F , we will need corrections to our collision
term [2]

Ωα = −1

τ
(fα − f eq

α ) + ∆Ωα, (2.20)
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where
∆Ωα = wα

(
1− 1

2τ

)(
q +

Qαijuiuj
2c4
s

q +
cαiFi
c2
s

+
QαijuiFj

c4
s

)
. (2.21)

We will also need to add subsequent corrections to the evaluation of the density, ρ, and
velocity, ~u,

ρ =
∑
α

fα +
1

2
q

ρui =
∑
α

cαifα +
1

2
Fi.

Further, it can be shown, using the Chapman-Enskog expansion, that the pressure p = c2
sρ,

and the kinematic viscosity ν = c2
s(τ − 1/2).

The standard method to implement the lattice Boltzmann equation is a two-step pro-
cedure, with a collision step and a propagation step. In the collision step, we calculate the
value of the LB distribution, f̃α, which is copied to the neighboring node in the α-direction,

f̃α(t, ~x) = fα(t, ~x) + Ωα(t, ~x). (2.22)

In the propagation step2, values are copied from one neighbor node to another, following
the velocity basis, so that

fα(t+ 1, ~x+ ~cα) = f̃α(t, ~x). (2.23)

If the system has solid walls, we will get situations where the right-hand side of the above
equation is not known, and we will need to supply a value using a boundary conditions. A
standard method in LB models is to use a so-called bounce back scheme. The bounce back
scheme that we use, in our standard case, is known as the half-way bounce back scheme. If
we assume that we do not know the value of f̃α(t, ~x−~cα), as the node, at position (~x−~cα),
is inside the solid, the scheme says that we can use the value at ~x in the opposite direction
of ~cα, which we will call ~cα = −~cα. The propagation step then becomes

fα(t+ 1, ~x) = f̃α(t, ~x).

This scheme will put a no-slip boundary condition on a wall located between positions ~x
and ~x− ~cα.

2.2 Continuum equations

2.2.1 Fluid flow

The state of a moving fluid may be described through its velocity ~u(t, ~x), its pressure
p(t, ~x), and its mass density ρ(t, ~x) at any position ~x and at any time t. These quantities
are governed by an equation of state, together with mass and momentum conservation.
Using the Einstein summation convention, where Latin indices denote Cartesian spatial
components, mass and momentum conservation may, in component form, be described
through [3, 10]

∂tρ+ ∂i(ρui) = q , (2.24)
ρ (∂tui + uj∂jui) = −∂ip+ Fi + qui + ∂jσ

′
ij − ∂jTij , (2.25)

2This can also be referred to as a streaming step
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where q(t, ~x) is a mass source or sink, p(t, ~x) is the pressure of the fluid, Fi(t, ~x) is the
component of any applied volume force, σ′ij(t, ~x) are the components of the deviatoric
stress tensor, and Tij are the components of any other stresses imposed on the fluid. For
the fluid motion to be fully described, an additional equation of state is required to describe
the relation between the pressure and the mass density of the fluid.

2.2.2 The deviatoric stress tensor σ′ij

For Newtonian fluids, the relationship between the viscous stress and the strain rate is per
definition perfectly linear, and the viscosity is independent of the state of motion or stress
in the fluid. Here, the deviatoric stress tensor

σ′ij = ρν

[
2Eij −

2

d
∂kukδij

]
+ ξ∂kukδij (2.26)

expresses the viscous stress tensor. Here, Eij = (1/2)
[
∂iuj + ∂jui

]
is the strain rate tensor,

ν and ξ are, respectively, the kinematic shear viscosity and the bulk (or volume) viscosity
of the fluid, and d is the number of spatial dimensions in the system.

2.2.3 Reactive Advection Diffusion

We consider here, in addition, diffusion of a quantity ϕ(t, ~x) influenced by the external
fluid flow. This quantity is the concentration, defined relative to the fluid density. It may
be shown [10] that, on component form, this process is described by the equation

ρ(∂tϕ+ ui∂iϕ) = ∂i(Dρ∂iϕ) +R− ϕkq, (2.27)

where D is the diffusivity and R(t, ~x) is any given source term. Such a source term could
for instance arise from the change in concentration of a chemical component due to bulk
chemical reactions.
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3 Code description and manual

3.1 Installation and compilation

3.1.1 Download

The code is available from the github repository:

https://github.com/eje74/BADChIMP-cpp

This repository can be cloned to your local machine using the following command line
argument:

$ git clone git@github.com:eje74/BADChIMP-cpp.git

This assumes that the user has setup ssh to work with github. The BADChIMP code is
then cloned into the folder BADChIMP-cpp.

3.1.2 Compilation on linux

To compile the code, run the following command-line argument

/BADChIMP-cpp$ ./make.sh <name_of_folder_with_main_file>

in the code root folder, which is BADChIMP-cpp if you have followed the instruction above.
The argument <name_of_folder_with_main_file> tells in which folder the main-file to
be complied is allocated. The standard case, std_case, is build if no argument is given.
The main-file folders are sub-folders in BADChIMP-cpp/src. This script will make a build
folder, run cmake from that folder and then run make. This can also be done, by hand,
using the following recipe:

/BADChIMP-cpp$ mkdir <build-folder-name>
/BADChIMP-cpp$ cd <build-folder-name>
/BADChIMP-cpp$ cmake -DLBMAIN:STRING="<name_of_folder_with_main_file>" ./..
/BADChIMP-cpp$ make

3.1.3 Compilation on Windows

Make sure that open MPI is installed1 Install cmake for Windows.2. Run cmake from root
directory to generate Visual Studio C++ project, or simply use VSCode.

1See https://docs.microsoft.com/en-us/archive/blogs/windowshpc/how-to-compile-and-run-a-simple-
ms-mpi-program. Download and run msmpisetup.exe and msmpisdk.msi.

2See https://cmake.org/
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Folder name Description
std_case Standard case, single fluid Navier-Stokes solver
two_phase Two phase simulator

Table 3.1: List of different main files

3.1.4 Generating a new main folder

In this sub section we will go through the steps to add a new main folder, which we will
call new_main_folder in the following, to the code repository.

The first step is to make a new sub directory in the ./BADChIMMP/src/ directory,
which we in this example has called ./BADChIMMP/src/new_main_folder. Then copy the
main.cpp and CMakeLists.txt from the std_case folder. If you for some reason want
to change the name of the main file in the new main folder, remember to also change the
main file-name in CMakeLists.txt. This is the whole recipe for creating a new main folder.
To generate a build folder just follow the instruction given in section 3.1 for running the
make.sh-script.

3.2 Structure of the main file

3.2.1 Main file outline

Here is an executive overview of the main-file for a standard pore scale simulations. Each
section is described in more detail on the following pages.

<include libraries>
<set lattice type>

int main()
{

// SETUP
<mpi>
<input and output directories>
<grid, geometry and mpi-communication>
<read input-file>
<macroscopic fields, i.e. density, velocity et c.>
<boundary conditiones>
<lattice Boltzmann velocity distributions>
<vtk-output>

// TIME LOOP
for (int i = 0; i <= nIterations; i++) {
// NODE LOOP
for (auto nodeNo: bulkNodes) {

<calculate macroscopic values>
<calculate collision term>
<propagate>

}
<swap data>
<mpi-communication>
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Variable name description
nD Number of spatial directions
nQ Number of lattice directions
c2 = C2

c2Inv = 1/C2

c4 = C4

c4Inv = 1/C4

c4Inv0_5 = 1/(2C4)

Table 3.2: Basic lattice structure

<apply bondary conditions>
<write to file>

}
<end of program rutines>

}

3.2.2 Lattice type

// SET THE LATTICE TYPE
#define LT D2Q9

The lattice type is set as the macro LT. The lattice type is a name of a static class and are
defined in header files in BADChIMP-cpp/src/lbsolver. The header files for the different
lattice types are listed in BADChIMP-cpp/src/LBSOLVER.h. The different lattice types are
defined in separate head files with the naming convention LBd<num dim>q<num dir>.h.
We note that in the current setup we have assumed that the last direction, that is, the
direction with the larges index, is the rest direction. The naming convention for the static
class is D<num dim>Q<num dir>. The lattice class contains a number of variables together
with functions for performing simple manipulations based on the lattice structure. We will
list most of them in the following tables.

The standard lattice structure constants are listed in table 3.2, besides the number of
spatial and lattice directions, this also includes different expressions involving the sound
speed, cs, which is defined in section 2.1.5. We will just note the notation C2 = c2

s and
C4 = c4

s. Basis vectors and vector operations are defined using functions, but the weights,
wα, and derived quantities are simple to access through standard vector notation, see table
3.3. The variables and functions to access the basis vectors are given in table 3.4.

The function for vector and distribution manipulations are listed in table 3.5. In
general, all function in this table that takes vector like input will assume that the elements
can be accessed using the [· · · ] notation. The functions that return vectors will return
std::valarray<lbBase_t> type objects.

Finally, we have the constants that relates to multi-phase simulations, where we have
an set of constants that is needed for the Reis and Phillips [12] implementations of color
gradient methods. The constants are listed in table 3.6 and referrers to Equation. 28 in
Reis and Phillips [12],

(
Ωk
q

)(2)
=
Ak
2
|~F |


(
~F · ~cq

)2

|~F |2
−Bq

 .
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Variable name description
w0 rest particle weight
w1 nearest neighbor weight
w2 nest nearest neighbor weight
...

...
w0c2Inv = w0/C2

w1c2Inv = w1/C2

w2c2Inv = w2/C2
...

...
w[q] = wq where 0 ≤ q < nQ

Table 3.3: Lattice weights

Variable name description
c(q, i) = cqi

reverseDirection(q) ~creverseDirection(q) = −~cq
cNorm[q] = |~cq|

Table 3.4: Lattice basis vectors

Variable name description
dot(u, v) = ~u · ~v
grad(s) = ∇s

cDot(q, u) = ~cq · ~u
cDotAll(u) = {~cq · ~u| 0 ≤ q < nQ}

qSum(f(0, nodeNo)) =
∑

α fα(t, ~x)
qSumC(f(0, nodeNo)) =

∑
α ~cαfα(t, ~x)

Table 3.5: Functions used to work with vectors and distributions. More information is
given in the text
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Variable name description
B0 rest particle weight
B1 nearest neighbor weight
B2 nest nearest neighbor weight
...

...
B[q] = Bq where 0 ≤ q < nQ

Table 3.6: Lattice weights for the two phase color gradient method.

3.2.3 mpi (setup)

The lattice Boltzmann code uses the MPI (Message Passing Interface) library to handle
parallel computation on clusters of cpu’s. The standard setup code for the mpi is

// *********
// SETUP MPI
// *********
MPI_Init(NULL, NULL);
int nProcs;
MPI_Comm_size(MPI_COMM_WORLD, &nProcs);
int myRank;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

The variables nProcs and myRank holds the total number of processors used in the com-
putations and the rank of the current process, respectively.

3.2.4 Input and output directories (setup)

After initializing mpi we need to define the directory paths for input and output files. In
BADChIMP there are two types of input files: one relating to geometry and geometry
partitioning, and another which supplies the standard input variables.

// ********************************
// SETUP THE INPUT AND OUTPUT PATHS
// ********************************
std::string chimpDir = "/BADChIMP-cpp/";
std::string mpiDir = chimpDir + "input/mpi/";
std::string inputDir = chimpDir + "input/";
std::string outputDir = chimpDir + "output/";

In the code above the base directory is saved in chimpDir. The code searches for the
geometry related files in mpiDir while the standard input file is in directory inputDir.
The output files from the simulations are written into outputDir.

3.2.5 Setup grid and geometry

This section of the code creates the object that handles input from the user, sets up the
system geometry, node partitioning and the mpi-communication protocol. The input data-
file, with input.dat as default name, is read into an Input object, while the vtklb-geometry
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files are read by an LBvtk-object. The grid-object, that defines the neighborhood of nodes,
depends on the vtklb object. The Nodes-object, that holds information about the node
type (e.g., if it is fluid, wall etc.), depends on both the grid and vtklb-objects. And finally,
the BndMpi, that handles the transfer of data between processor partition boundaries, is
dependent on the nodes-, grid-, and vtklb-objects.

// ***********************
// SETUP GRID AND GEOMETRY
// ***********************
Input input(inputDir + "input.dat");
LBvtk<LT> vtklb(mpiDir + "tmp" + std::to_string(myRank) + ".vtklb");
Grid<LT> grid(vtklb);
Nodes<LT> nodes(vtklb, grid);
BndMpi<LT> mpiBoundary(vtklb, nodes, grid);

In the next sections we will go through the different objects that are declared here.

3.2.6 Input

The Input-object expects an input file in a nested block structure, and uses # for comments.
A block is defined by two sets of angle brackets, the first pair contains a name (and possibly
a type definition), and the second pair contains a end key word which ends the block.

<block-name>
# bulk content

<end>

Blocks can also be nested:

<block-nameA>
# bulk content
<block-nameB>

# bulk content
<end>
# more bulk content

<end>

So, how to we add values to be read by the program? Outside of an block structure one
uses the set key-word on the form

set name value # e.g. set pi 3.14

In the program you access this value using the input-object

double var = input["name"];

Inside an block a name followed by either one or a list of numerical vales:

<block-name>
nameA value # e.g. pi 3.14
nameB value1 value2 ... # e.g. prime 2 3 5 7

<end>

These inputs are imported in the following manner,
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double val = input["block-name"]["nameA"];
std::vector<int> valarr = input["block-name"]["nameB"];
// valarr = {2, 3, 4, 5, 7}

Nested blocks are accessed in a similar manner, by ordering the block names from left to
right, where the left is the outermost block and the right is the innermost, e.g.,

<block-nameA>
<block-nameB>

pi 3.14
<end>

<end>

is read as

double pi = input["block-nameA"]["block-nameB"]["pi"];

Values can also be added in matrix form

<name type>
val(0,0) val(0,1) ... val(0,m-1)
val(1,0) val(1,1) ... val(1,m-1)
...

val(n-1,0) val(n-1,1) ... val(n-1,m-1)
<end>

Here, type can be char or int, or be omitted assuming that the entries are of floating
point type. The matrix type is accessed as an vector,

// valmat = {val(0,0), val(0,1), ... ,val(0,m-1),
// val(1,0), ...,val(n-1,m-1)}
std::vector<double> valmat = input["name"];

When using a char type, the data is read digit by digit and no white-space characters
should separate the values which now should be a numerical digit (0-9), e.g.,

<binary char>
0101
1110

<end>

and is read as

std::vector<int> binary = input["binary"];
// binary = {0,1,0,1,1,1,1,0}

3.2.7 LBvtk

The LBvtk object reads the vtklb geometry files together with any appended data. You can
use this object to get access to appended data3. To get access to the scalar attribute we
need to use the class methods toAttribute and getScalarAttribute to access the data
and to get the range of nodes number from beginNodeNo and endNodeNo. As an example
we will show how to read the attribute "name" of double-type from file and print it to
screen,

3For now we have only implemented functionality for obtaining scalar attributes.
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vtklb.toAttribute("name");
for (int n=vtklb.beginNodeNo(); n<vtklb.endNodeNo(); ++n) {

std::cout << vtklb.getScalarAttribute<double>() << std::endl;
}

Here, toAttribute(std::string s) takes the attribute name as a string input. beginNodeNo()
return the first node number read and endNodeNo() gives the end range of node numbers.
getScalarAttribute<type>() reads entries of numerical type type which is given as a
template typename.

3.2.8 Grid

The Grid object contains information about which nodes are part of a node’s neighborhood
and the spatial position of each node. Information about the neighborhood of a node is
found by using the neighborhood-function,

auto neighbor_node = grid.neighbor(alpha, node);
// return the node number of the
// neighboring node in the alpha
// direction

auto neighbor_nodes = grid.neighbor(node);
// Returns a list of the node numbers
// to all nodes in the neighborhood

The position in Cartesian coordinates is found by using pos,

auto pos = grid.pos(node);
// pos = x_pos, y_pos, z_pos

auto pos_i = grid.pos(node, index);
// return the node’s position’s
// Cartesian index

To find a node number from a position array, you can use Grid’s nodeNo:

int node = 10;
auto pos = grid.pos(node);
int node_from_pos = grid.nodeNo(pos);
// node_from_pos = 10

The getNodePos returns the position of nodes in Cartesian coordinates as an integer vector
on the from [x, y, z]. The function is overloaded. So, given a list of node numbers, the
syntax is

std::vector<int> list_of_nodes = {2, 4, 6};
auto list_of_pos = grid.getNodePos(list_of_nodes);
// list_of_pos is of type std::vector<std::vector<int>>
// If
// pos_of_node2 = {1, 1, 2}
// pos_of_node4 = {3, 1, 5}
// pos_of_node6 = {2, 5, 2}
// then
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boundary

bulk fluid

boundary
fluid
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Figure 3.1: A sketch of the different node types. In this figure gray shows the solid part of
the geometry and with is the fluid. The thick black line is the solid fluid boundary.

// list_of_pos = {{1, 1, 2},
// {3, 1, 5},
// {2, 5, 2}}

The function can also be used with two arguments: a begin node and an end node number.
The function will then return the position as a vector starting with the begin node and
ending with the end node. The end node’s position is not part of the output vector. An
example is given below:

int begin_node = 2;
int end_node = 4;
auto list_of_pos = grid.getNodePos(begin_node, end_node);
// list_of_pos = {pos_node2, pos_node3}

Finally, to get the total number of node numbers represented in grid we can use grid.size().
Note that this includes the potential default ghost node label.

auto total_number_node_labels = grid.size();

3.2.9 Nodes

The Nodes object contains more information about the nodes. Nodes comes in five different
types, as far as the Nodes-class is concerned: the default ghost node, solid nodes of bulk
and boundary type, and fluid nodes of bulk and boundary type (see Fig. 3.1). A fluid node
is a boundary node if it has a solid node in its neighborhood, and vice versa for solid nodes.
The fluid node is a bulk node if it is not at boundary node. The reason for this labeling is
that a boundary node will have unknown LB distributions after the streaming step, as, at
least, one velocity distribution comes from a solid node. Besides the solid and fluid nodes,
we can have a default ghost node that is used as a dummy node. The default ghost node is
treated as a solid node. Each node type is given a numerical value, as presented in Table
3.7. The node type value is accessed using the getType function. The code below prints
the node type value for all nodes in the grid-object
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Node type value
default ghost -1
solid bulk 0
solid boundary 1
fluid boundary 2
fluid bulk 3

Table 3.7: Numerical key value for representing node types

for (int n=0; n < grid.size(); ++n)
{

std::cout << "Node number " << n << " ";
std::cout << "has the node type value " << nodes.getType(n);
// nodes.getType(n) returns an int
std::cout << std::endl;

}

The nodes object also contains many Boolean functions, returning true/false values for
the question "is node ... of type ...":

int node_number = 4;

nodes.isDefault(node_number);
// return true of the node is a default ghost node, false otherwise

nodes.isBulkSolid(node_number);
// return true of the node is a bulk solid node, false otherwise

nodes.isSolidBoundary(node_number);
// return true of the node is a solid boundary node, false otherwise

nodes.isFluidBoundary(node_number);
// return true of the node is a fluid boundary node, false otherwise

nodes.isBulkFluid(node_number);
// return true of the node is a bulk fluid node, false otherwise

We can also ask the nodes object if a node is fluid or solid. A fluid node is a node that is
either a fluid boundary or a bulk fluid, whereas a solid is either a solid boundary, a solid
bulk or a default ghost. The class functions used for this is

nodes.isSolid(node_number);
// return true of the node is a solid node, false otherwise

nodes.isFluid(node_number);
// return true of the node is a fluid node, false otherwise

The nodes object also holds some information about the parallel partitioning of the sys-
tem. Spesifically, it holds the information about which processor rank a node represents.
Typically, a node that is a bulk fluid node on one processor will be a boundary fluid node
on one of its neighboring processors, as it will need to get velocity distributions that are
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calculated on the former processor. More information about how the code handles paral-
lelization is found in sections A and B. To obtain which processor rank a node represents
we can use

auto node_rank = nodes.getRank(node_number);
// node_rank is set to an int containg the rank number given by mpi

To find out if the rank of a node is the same as the rank of the current process use

auto true_false = nodes.isMyRank(node_number);
// True if the node has the same rank as the current process, false otherwise

Finally you could ask if it is an mpi boundary node with

auto true_false = nodes.isMpiBoundary(node_number);
// True if node is an mpi boundary, false otherwise

3.2.10 BndMpi

The BndMpi class holds algorithms for transferring information between processors in a par-
allel setup. Most of this is done "under the hood" in the constructor when the mpiBoundary
object is declared, but we need to specify in the code when we want this communication,
between processors, to occur. The BndMpi class contains methods for the communication
of scalar fields and velocity distribution fields. The scalar field communication is invoked
by the overloaded class method communciateScalarField:

ScalarField rho(2, grid.size());

mpiBoundary.communciateScalarField(0, rho);
// communicates rho’s 0’th field to the neighboring processors

mpiBoundary.communciateScalarField(1, rho);
// communicates rho’s 1’th field to the neighboring processors

mpiBoundary.communciateScalarField(rho);
// communicates all rho’s fields to the neighboring processors
// In the case above this is the same as
// mpiBoundary.communciateScalarField(0, rho);
// mpiBoundary.communciateScalarField(1, rho);

The ScalarField class is discussed later in this section. The communication of velocity
distribution fields are similar to that of the scalar fields:

LbField<D2Q9> f(2, grid.size());

mpiBoundary.communicateLbField(0, f, grid);
// communicates f’s 0’th field to the neighboring processors

mpiBoundary.communicateLbField(1, f, grid);
// communicates f’s 1’th field to the neighboring processors

mpiBoundary.communicateLbField(f, grid);
// communicates all rho’s fields to the neighboring processors

The LbField class is discussed later in this section.
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3.2.11 Boundary and bulk nodes

There are several functions that can be used to partition the nodes in the different groups:
findBulkNodes, findSolidBndNodes, findFluidBndNodes. The findBulkNodes returns
a list of bulk node labels, where a bulk node is assumed to be a fluid node that is on
the current processor. This function is defined to return the nodes that are part of the
standard LB algorithm. The function is overloaded:

auto bulkNodes = findBulkNodes(nodes);
// returns a stl int vector with node numbers and
// takes a Nodes-object as input

std::vector<int> marker;
...
auto bulkNodesMarker = findBulkNodes(nodes, marker);
// returns a stl int vector with node numbers, and
// takes a Nodes-object and an stl int vector as input.
// Besides the above mentioned criteria, a bulk node
// will also need to be marked with a zero in the
// maker vector.

The findSolidBndNodes returns a list of node numbers for the solid boundaries nodes on
the given processor. The function is not overloaded:

auto solidBoundaryNodes = findSolidBndNodes(nodes);
// returns a std int vector with node numbers and
// takes a Nodes-object as input

The findFluidBndNodes also returns a list of node numbers of fluid boundary nodes, but
in the same way as findBulkNodes it is overloaded allowing for the addition of a marker
vector:

auto fluidboundarNodes = findFluidBndNodes(nodes);
// returns a stl int vector with node numbers and
// takes a Nodes-object as input

std::vector<int> marker;
...
auto fluidboundarNodesMarker = findFluidBndNodes(nodes, marker);
// returns a stl int vector with node numbers, and
// takes a Nodes-object and an stl int vector as input.
// Besides the above mentioned criteria, a bulk node
// will also need to be marked with a zero in the
// maker vector.

3.2.12 Boundary conditions

The boundary conditions are usually based on the Boundary class. The boundary class
contains a list of boundary nodes where the all basis directions are categorized in γ, β, or
δ. But first, we will expand a bit on the classification of nodes. As noted before, we call
a node solid if that node does not stream a value. Hence, if a neighbor node is a solid,
the distribution propagated from that node will be treated as unknown. A solid node will
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direction
~cβ unknown
−~cβ known
~cγ known
−~cγ known
~cδ unknown
−~cδ unknown

Table 3.8: link categories

not alway be a solid part of the geometry. For instance, the ghost node neighbors of inlet
and outlet boundaries will be treated as solids in the Node class. This will be used in the
Boundary constructor which uses Nodes’ isSolid to decide if a node is a solid or not.

The classification of boundary node directions is based on directions pairs. A pair is
defined as a lattice direction and its reverse. As mentioned, there are three types of link
pairs β, γ, or δ, which are characterized according to whether or not the values are known
after streaming. That is, are values streamed from fluid nodes (known) or from solid nodes
(unknown)? The categorization of links are given in Table 3.8, and illustrated in figure 3.2.
In a Boundary object just one direction for each link is recorded. So, to get all directions
we need to use the revDir function of the recorded directions to obtain both directions
in the pair. Firstly, the Boundary class contains a function to get access to the boundary
nodes:

γ

~cγ

~cγ

β

~cβ

~cβ

δ

~cδ

~cδ

Figure 3.2: The figure shows the three categories of boundary links, γ, β and δ to the left,
middle and right, respectively. Here, we have denoted the revere direction by using an
overline-symbol over the Greek-letter label.

std::vector<int> list_of_boundary_nodes;
...
// Constructor
Boundary<D2Q9> boundary(list_of_boundary_nodes, nodes, grid);
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// Boundary node list
auto number_of_boundary_nodes = boundary.size();
// Holds the length of the list of boundary nodes

int boundaryNumber;
...
auto nodeNumber = boundary.nodeNo(boundaryNumber);
// nodeNumber holds the node number of the boundaryNumber-element in the
// list of boundary nodes.

Secondly, the Boundary class contains a function to obtain the number of pairs in the given
categories, and list them. To find the number of links of a given type, at a given boundary
node, we can use the following functions:

auto number_of_beta_links_inline = boundary.nBeta(boundaryNumber);
// Returns the number of beta links

auto number_of_gamma_links_inline = boundary.nGamma(boundaryNumber);
// Returns the number of gamma links

auto number_of_delta_links_inline = boundary.nDelta(boundaryNumber);
// Returns the number of delta links

We note that each link consist of a pair of directions. So, to obtain the total number of
directions, we will need to multiply each number-of-links variable by 2. To find the list of
links contained in each category, we can use the functions listed below. We note that each
element in the list returned contains only one of the directions in a link pair. For the γ and
δ directions, we know that both directions are either known or unknown, respectively. But,
for the β direction we have specified that the direction returned is the unknown direction.

std::vector<int> list_of_beta_directios = boundary.beta(boundaryNumber);
// list of the unknown direction member from each beta link pair for bondary
// member element boundaryNumber

std::vector<int> list_of_gamma_directios = boundary.gamma(boundaryNumber);
// list of one direction member from each gamma link pair for bondary member
// element boundaryNumber

std::vector<int> list_of_delta_directios = boundary.delta(boundaryNumber);
// list of one direction member from each delta link pair for bondary member
// element boundaryNumber

Finally we have added the function dirRev to find the reverse direction of lattice direction:

int dir;
... // dir will hold an arbitrary lattice direction
auto reverse_dir = boundary.dirRev(dir);
// reverse_dir holds the reverser direction of dir.

To show the full use of the Boundary class, we will give an example of going through all
boundary nodes in the boundary object and list all directions classified by link-type, and
know and unknown values:
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for (int n = 0; n < boundary.size(); n++)
{

int node = boundary.nodeNo(n); // Get node number
std::cout << "Node number " << node << std::endl;
// Print all beta values
std::cout << "beta =";
auto beta = boundary.beta(n);
for (int q = 0; q < boundary.nBeta(n); ++q) {

std::cout << " " << beta[q] << "(Unknown)";
std::cout << " " << boundary.revDir( beta[n] ) << "(Known)";

}
std::cout << std::endl;
// Print all gamma values
std::cout << "gamma =";
auto gamma = boundary.gamma(n);
for (int q = 0; q < boundary.nGamma(n); ++q) {

std::cout << " " << gamma[q] << "(Known)";
std::cout << " " << boundary.revDir( gamma[q] ) << "(Known)";

}
std::cout << std::endl;
// Print all delta values
std::cout << "delta =";
auto delta = boundary.delta(n);
for (int q = 0; q < boundary.nDelta(n); ++q) {

std::cout << " " << delta[n] << "(Unknown)";
std::cout << " " << boundary.revDir( delta[n] ) << "(Unknown)";

}
std::cout << std::endl;

}

Caution: Note that a node number and the numbering of an element in the boundary
node list are usually not the same number. We get the node number from the index of the
boundary list by using the nodeNo function.

The class HalfWayBounceBack is used to enforce the half-way bounce-back boundary
condition. The declaration of an object of this class needs a list of nodes, a Nodes object,
and a Grid object:

auto list_of_fluid_nodes = findFluidBndNodes(nodes);
// std vecter of node numbers of the nodes that are part of the boundary

HalfWayBounceBack<D2Q9> boundaryCondition(list_of_fluid_nodes, nodes, grid);
// Declaration of the a HalfWayBounceBack object. Besides the
// list-of-fluid-nodes it takes a Nodes object and a Grids object as input.

For a fluid simulations, we would expect the list-of-boundary-nodes to be fluid boundary
nodes. We would also assume that the solid boundary nodes are part of the system, as this
will hold the bounce back part of the distributions. The half-way bounce-back is effectively
a part of the propagation routine. The conceptual picture is that the distributions hits
a wall, located half way between the origin node and the destination node, where it is
flipped and returns to the origin as the distribution going in the opposite direction as it
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left. This means that it could, and should, be applied straight after the bulk node loop.
The boundary condition is applied using the overloaded apply class function:

LbField<D2Q9> f(2, grid.size());
// f holds two LB distributions

boundaryCondition.apply(0, f, grid);
// Applies the half-way bounce back to field 0

boundaryCondition.apply(1, f, grid);
// Applies the half-way bounce back to field 1

boundaryCondition.apply(f, grid);
// Applies the half way bounce back to all fields represented by f
// It is equivalent to running the two functions above, in this case

3.2.13 Field classes

There are currently three field classes in BAChIMP: ScalarField, VectorField, and
LbField: These represent fields of scalars, vectors, and LB distributions, respectively. The
scalar and vector field objects are used to hold the fluid density and velocity, for instance.
Below we see a standard initialization step in a LB simulation, where all densities are set
to 1 and all velocities are set to 0.

// ******************
// MACROSCOPIC FIELDS
// ******************
// LT is a constant representing a lattice type
//
// Density
ScalarField rho(1, grid.size());
// Velocity
VectorField<LT> vel(1, grid.size());
// Initiate values
for (auto nodeNo: bulkNodes) {

rho(0, nodeNo) = 1.0;
for (int d=0; d < LT::nD; ++d)

vel(0, d, nodeNo) = 0.0;
}

The ScalarField object declaration, ScalarField rho(1, grid.size()), takes two in-
put arguments. The first is the number of fields and the second is the size of the system.
In the case here, we have only one field, and the number of elements matches the size of
the system. The same input arguments are needed by the VectorField<LT> object. We
also note that a vector field is a template class. We obtain the values from a scalar object
by referring to the field and node number, so that

auto value = rho(0, 4);
// value has the type given by lbBase_t.

returns the value of the node with node number 4 in the 0’th field. We note that, as is
standard in C++, we begin the numbering of fields with 0. There are two way to obtain
values from a VectorField object:
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auto value = vel(0, 1, 4);
// Return the value of component 1 at node number 4

auto vector = vel(0, 4);
// returns a std::valarray of lbBase_t elments
// represnting the vector value at node number 4

The number of components of a vector in a VectorField object is the same as the dimension
of the lattice type. To set values we use the same notation as above for the ScalarField
and for components of vectors for the VectorField, but if you want to assign a vector to
a node use VectorField’s set function:

VectorField<LT> vector(1, 1);
VectorField<LT> vectorField(1, 10);
...
vectorField.set(0, 4) = vector(0, 0);
// Sets the vector at node 4 equal the value of vector(0, 0);

The LbField class is similar to the VectorField class, except that the distribution is
represented as a vector with the same number of elements as the number of basis vectors.
Below we show how to initialize the distribution, fα = wαρ,

// ***********************
// LB FIELD INITIALIZATION
// ***********************
LbField<LT> f(1, grid.size()); // LBfield
for (auto nodeNo: bulkNodes) {

for (int q = 0; q < LT::nQ; ++q) {
f(0, q, nodeNo) = LT::w[q]*rho(0, nodeNo);

}
}

The declaration of a LbField object is equal to the declartion of a VectorField object,
where the first argument is the number of fields and the second is the number of nodes.
As for vector fields, you access the element in a LbField object using the field number and
node number to obtain a vector, containing all distribution values at a node. Or, one can
specify field number, direction and node number to access a given direction at a node:

auto value = f(0, 7, 2);
// Return the value of the distribution component 7
// at node number 2

auto distribution = f(0, 2);
// returns a std::valarray of lbBase_t elments
// represnting the distribution value at
// node number 4

For the propagation step, fα(t + 1, ~x + ~cα) = f̃α(t, ~x), we can use a loop over all lattice
directions

LbField<LT> f(1, grid.size());
LbField<LT> f_tilde(1, grid.size());
...
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for (auto nodeNo: bulkNodes) {
...

for (int q = 0; q < LT::nQ; ++q) {
f(0, q, grid.neighbor(q, nodeNo)) = f_tilde(0, q, nodeNo);

}
}

This can also be accomplished using the propagateTo function, taking a field number, a
node number, a vector of distribution values, and a grid object as input:

for (auto nodeNo: bulkNodes) {
...
f.propagateTo(0, nodeNo, f_tilde(0, nodeNo), grid);

}

Finally, LbField has the function swapData that lets one LbField object swap data with
another LbField object of the the same type. This is for use int the standard pointer
swapping used after propagation in a LB code. An example if given below:

LbField<LT> f(1, grid.size());
LbField<LT> f_tmp(1, grid.size());
...
f.swapData(f_tmp);

After swapData f now holds f_tmp’s data and vice verse.

3.2.14 Macroscopic values and collision

The macroscopic values we need to run is the fluid density and velocity. To calculate the
density, ρ =

∑
α fα, we use the calcRho function:

// Copy of local velocity diestirubtion
auto fNode = f(0, nodeNo);
// fNode holds the lb distribution at node with
// node nummber nodeNo

auto rhoNode = calcRho<LT>(fNode);
// rhoNode holds the density

Similarly we will calculate the velocity, ρ~u =
∑

α ~cαfα + 1/2~F , using calcVel. calcVel
returns a std::valarray and is an overloaded:

auto velNode = calcVel<LT>(fNode, rhoNode);
// returns the velocity as if the body force was zero

std::valarray<lbBase_t> force;
...
auto velNodeFroce = calcVel<LT>(fNode, rhoNode, force);
// returns the velocity adjusted for the force according
// to Guo’s forcing scheme.

The physics of in a lattice Boltzmann simulation is governed by the collision term.
Different collision terms are defined in the Lbcollision.h file in the src/lbsolver/ di-
rectory. The general scheme for the collision step is to let the functions calculating the
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collision terms and their corrections return the results as vectors and then add them in the
propagation step. For example, the function for the standard BGK-collision term looks
like this:

inline std::valarray<lbBase_t> calcOmegaBGK(const T &f, const lbBase_t &tau,
const lbBase_t& rho, const lbBase_t& u_sq, const std::valarray<lbBase_t> &cu)
{

std::valarray<lbBase_t> ret(DXQY::nQ);
lbBase_t tau_inv = 1.0 / tau;
for (int q = 0; q < DXQY::nQ; ++q)
{

ret[q] = -tau_inv *
(

f[q] - rho * DXQY::w[q]*
(

1.0
+ DXQY::c2Inv*cu[q]
+ DXQY::c4Inv0_5*(cu[q]*cu[q] - DXQY::c2*u_sq)

)
);

}
return ret;

}

As input it takes a lb distribution f, fα, the collision time tau, τ , the density rho, ρ, and
the two last input parameters are the derived quantities u_sq, ~u·~u and the list of the vector
products between the basis vectors and the velocity vector cu, ~u ·~cα. We have added ~u · ~u
and ~u · ~cα instead of only the velocity as the former quantities are also need elsewhere in
the code block. We note that the function returns a vector that with the same number of
elements as the number of directions. In the for-loop we calculate the collision operator,
Ωq = −(1/τ)(fq − f eq

q ), and we have written f eq
q and the form

ρwq

(
1 +

~u · ~cq
c2
s

+
1

2c4
s

(
(~u · ~cq)2 − c2

s~u · ~u
))

3.3 Running a Navier-Stokes simulation

In this section we will go through the code in the main file line by line for the setup of a
Navier-Stokes simulation. But first we will describe how to use the XX python script to
generate a geometry read in the main file.

In the text we will use a numbering of the lines in the actual scripts such that it becomes
easy to notice the difference between code listing and comments.

3.3.1 Generating a geometry file

Before we run the LB code, we will need to generate the geometry files that are used as
input. The python scripts for generating the geometry files are found in the PythonScripts
directory. The general script, that is imported into case specific geometry files, is the vtklb
file.

A note on Cartesian directions: the notation is that the first index in an array refers to
the first Cartesian coordinate, the second index refers to the second Cartesian coordinate,
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and so on. As is standard, the first, second and third Cartesian coordinates are also referred
to as the x, y and z coordinates, respectively.

A standard example is given below and is found in the geometry_demo.py script:

1 #!/usr/bin/env python3
2 from vtklb import vtklb
3 import numpy as np
4 import matplotlib.pyplot as plt
5

In line 1, the script only tells the system that the file is a python-3 program and is not
necessary. The vtklb class is imported in from the vtklb.py script in line 2. In lines 3
and 4, we import standard python libraries.

6 # system size: nx ny
7 sytems_size = (40, 32)
8 # set the size of the geometri
9 geo = np.ones(sytems_size, dtype=int)

10 # partition the system in two
11 geo[20:, :] = 2
12 # Add solids to
13 # - top and bottom plate
14 geo[:,0] = 0
15 geo[:,-1] = 0
16 # - lower left corner
17 geo[:10, :11] = 0
18 # - upper left corner
19 geo[:10, 21:] = 0
20 # - lower right corner
21 geo[30:, :11] = 0
22 # - upper right corner
23 geo[30:, 21:] = 0
24

The sytems_size, in line 7, sets the system size as 40 grid points in the x-direction and
32 in the y direction. And, in line 9, we define the integer geo matrix. This matrix will
inform the vtklb about the location of solid and fluid nodes, and also the partitioning of
the system. Solid nodes will be marked by 0 and fluid nodes are marked with integers from
1 and upwards. This number tells which processor the fluid nodes belong to. This number,
for the fluid nodes, is one number higher than the rank of the process it is assigned to,
since 0 is already used for solid nodes (or nodes that is not a part of the system). Lines
11 to 23 sets the geometry and the partitioning of the system, as shown in figure 3.3.

25 # path to your badchimp folder
26 path_badchimp = "/BADCHiMP/"
27 # generate geometry input file(s)
28 vtk = vtklb(geo, "D2Q9", "x", "tmp", path_badchimp + "input/mpi/")
29

The path_badchimp holds the path to the top level BADCHiMP directory. The vtklb
object declaration in line 28 writes the geometry information to files. The first argument
geo gives the geometry, and is discussed before in this section; the second argument "D2Q9"
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Figure 3.3: A sketch of the geometry. Color coding : violet are solids; turquoise are fluid
nodes on processor with rank 0; yellow are fluid nodes on processor with rank 1.

gives the lattice type which can be a predefined type, as in the script above, or one of your
own definition; The third argument "x" tells in which directions the system is periodic, if
for example we want a system to be periodic in the x- and z- directions we would have
given "xz" as the third argument; the fourth argument "tmp" sets the base of the output
name used as input to the lb code; the fifth argument path_badchimp + "input/mpi/"
gives the directory where the geometry files are written to. It is, of course, important that
the file and directory names matches those in the LB code.

30 # Set initial density
31 # - get the Cartesian coordinates
32 X, Y = np.mgrid[0:40, 0:32]
33 # - set rho
34 rho = 1.0 + 0.1*np.sin(2*np.pi*X/40)
35
36 # Add rho to the geometry files
37 vtk.append_data_set("init_rho", rho)

Here, we also want to add an initialization rho. In lines 30 to 35, we define the initial
rho (shown in figure 3.4). Here, it is important that rho is the same size as geo. In line
37, rho is added to input files using vtklb’s class function append_data_set, taking two
arguments, where the first gives the name of the attribute, "init_rho", and the second
gives the actual values, rho.

3.3.2 A standard main file

In this section, we describe the main file in BADChIMP/src/std_case. The code will sim-
ulate a standard Navier-Stokes fluid simulation. We are using the BGK-collision routine,
as described in the introduction, and we are using the Guo forcing scheme. The geometry
and how to generate it is explained in the above section 3.3.1. The system has two spatial
dimensions and we are using the D2Q9 lattice. The initial density, rho, is defined in the

32



0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Figure 3.4: The figures shows the initial rho in LB units.

geometry input file, while the initial velocity is set to zero. The system is driven by a
body force, bodyForce, and the boundary are of the half-way bounce back type. In the
following, a code section is presented first, followed by a more detailed description of its
purpose.

10 #include "../LBSOLVER.h"
11 #include "../IO.h"
12
13 // SET THE LATTICE TYPE
14 #define LT D2Q9
15

In line 10, we include the libraries for the classes and functions used in the lattice Boltzmann
sections and to read the geometry. In line 11, we include the classes used to read the input
file and write the fields to vtk-files. In line 14, we set the lattice type to D2Q9.

16 int main()
17 {
18 // *********
19 // SETUP MPI
20 // *********
21 MPI_Init(NULL, NULL);
22 int nProcs;
23 MPI_Comm_size(MPI_COMM_WORLD, &nProcs);
24 int myRank;
25 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
26

Line 16 starts the definition of the main function, and with that the beginning of code
block that describes the LB simulations. Lines 21 to 25 initiate MPI’s parallel program
communication. nProcs holds the total number of processes used in the parallel simulation
of the system, and myRank holds the rank of the current processor.
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27 // ********************************
28 // SETUP THE INPUT AND OUTPUT PATHS
29 // ********************************
30 std::string chimpDir = "BADCHiMP/";
31 std::string mpiDir = chimpDir + "input/mpi/";
32 std::string inputDir = chimpDir + "input/";
33 std::string outputDir = chimpDir + "output/";

Line 30 to 33 set the directory paths used to find input files and where to write the output
files. chimpDir is the path to the main code directory. mpiDir is the directory where the
python script defining geometry writes its output. This directory needs to match the one
given to the vtklb-python object. inputDir is where the input file, read by the Input
object, is found. outputDir is where BADChIMP writes its output files.

35 // ***********************
36 // SETUP GRID AND GEOMETRY
37 // ***********************
38 Input input(inputDir + "input.dat");
39 LBvtk<LT> vtklb(mpiDir + "tmp" + std::to_string(myRank) + ".vtklb");
40 Grid<LT> grid(vtklb);
41 Nodes<LT> nodes(vtklb, grid);
42 BndMpi<LT> mpiBoundary(vtklb, nodes, grid);
43 // Set bulk nodes
44 std::vector<int> bulkNodes = findBulkNodes(nodes);

In lines 38 and 39, the input-file and the geometry files are read, as described in sections
3.2.6 and 3.2.7. And, in lines 40 to 42, we define the Grid, Nodes, and BndMpi objects
described in sections 3.2.8, 3.2.9, and 3.2.10, respectively. In line 44, we assign the list of
bulk nodes to bulkNodes which contains the nodes numbers that we will loop over in our
main-loop. Node types are described in 3.2.11.

44 // *************
45 // READ FROM INPUT
47 // *************
48 // Number of iterations
49 int nIterations = static_cast<int>( input["iterations"]["max"]);
50 // Write interval
51 int nItrWrite = static_cast<int>( input["iterations"]["write"]);
52 // Relaxation time
53 lbBase_t tau = input["fluid"]["tau"];
54 // Body force
55 VectorField<LT> bodyForce(1, 1);
56 bodyForce.set(0, 0) = inputAsValarray<lbBase_t>(input["fluid"]["bodyforce"]);

In this section, we assign the values given in the input file to variables. The input-file for
this case contains four values: three scalars and one vector. The file looks like this:

<iterations>
max 5000 # stop simulation after
write 100 # write interval in steps

<end>
<fluid>
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tau 0.8 # Collision time
bodyforce 1e-5 0 # Body force

<end>

The file format for input files is described in section 3.2.6. Here, we see that it contains two
block, the first one, iterations, sets the number iterations of the write interval. These
are set in lines 49 and 51. The second block, fluid, assigns the values that are needed in
the LB-method. The collision time is set in line 53 and the body force is set in line 56.
Note that for bodyForce we must first define it (line 55) and then use VectorField’s set
to assign the value.

59 // ******************
60 // MACROSCOPIC FIELDS
61 // ******************
62 // Density
63 ScalarField rho(1, grid.size());
64 // Initiate density from file
65 vtklb.toAttribute("init_rho");
66 for (int n=vtklb.beginNodeNo(); n < vtklb.endNodeNo(); ++n) {
67 rho(0, n) = vtklb.getScalarAttribute<lbBase_t>();
68 }

Here, we define the fluid density ρ as rho (line 63) and it will have the same number
of elements as there are grid nodes. The rho is initialized from the values given in the
geometry files. This must be read using the vtklb (in lines 65 to 68). The LBvtk class is
described in section 3.2.7.

70 // Velocity
71 VectorField<LT> vel(1, grid.size());
72 // Initiate velocity
73 for (auto nodeNo: bulkNodes) {
74 for (int d=0; d < LT::nD; ++d)
75 vel(0, d, nodeNo) = 0.0;
76 }

The initial velocity is set to zero. The velocity field, ~v(t, ~x), is represented by vel (line 71)
and is initialized to zeros through the for-loop (line 73-76).

78 // ******************
79 // SETUP BOUNDARY
80 // ******************
81 HalfWayBounceBack<LT> bounceBackBnd(findFluidBndNodes(nodes), nodes, grid);

In line 81, we define object bounceBackBnd that we use for the half-way bounce back
boundary conditions. The function findFluidBndNodes returns a list of fluid boundary
node number, as defined in section 3.2.11.

83 // *********
84 // LB FIELDS
85 // *********
86 LbField<LT> f(1, grid.size());
87 LbField<LT> fTmp(1, grid.size());
88 // initiate lb distributions
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89 for (auto nodeNo: bulkNodes) {
90 for (int q = 0; q < LT::nQ; ++q) {
91 f(0, q, nodeNo) = LT::w[q]*rho(0, nodeNo);
92 }
93 }

This section defines and initializes the LB distributions. We define two variables f (line 86)
and fTmp (line 87). fTmp is only used as a temporary variable to simplify the propagation
step. The initial LB distribution is set, in lines 89 to 93, to fq(t = 0, ~x) = wqρ(~x).

95 // **********
96 // OUTPUT VTK
97 // **********
98 auto node_pos = grid.getNodePos(bulkNodes);
99 auto global_dimensions = vtklb.getGlobaDimensions();

100 Output output(global_dimensions, outputDir, myRank,
nProcs, node_pos);

101 output.add_file("lb_run");
102 VectorField<D3Q19> velIO(1, grid.size());
103 output["lb_run"].add_variable("rho", rho.get_data(),

rho.get_field_index(0, bulkNodes), 1);
104 output["lb_run"].add_variable("vel", velIO.get_data(),

velIO.get_field_index(0, bulkNodes), 3);
105 outputGeometry("lb_geo", outputDir, myRank, nProcs, nodes, grid, vtklb);

Lines 98 to 105 shows how to add input variables to the Output object output. The plotting
has been standardized to work with only 3 dimensional vector fields which is why we have
added the ad hoc object velIO to help plot the velocity. A new plotting routine has been
developed but is not fully tested yet. It will soon be include into the code repository.

107 // *********
108 // MAIN LOOP
109 // *********
110 for (int i = 0; i <= nIterations; i++) {

This section introduces the beginning of the main time iteration loop. The maximum
number of iterations is set by nIterations.

111 for (auto nodeNo: bulkNodes) {
112 // Copy of local velocity diestirubtion
113 const std::valarray<lbBase_t> fNode = f(0, nodeNo);
114
115 // Macroscopic values
116 const lbBase_t rhoNode = calcRho<LT>(fNode);
117 const auto velNode = calcVel<LT>(fNode, rhoNode, bodyForce(0, 0));

Here, the loop over all bulk nodes (line 111) is initiated. In this case, this means all fluid
nodes. fNode holds a copy of the local LB distribution (line 113), and is used repeatedly
in this block. The fluid density (rhoNode)

ρ =
∑
α

fα,
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is calculated in line 116, and the fluid velocity (velNode)

ui = ρ−1

(∑
α

cαifα +
1

2
Fi

)
,

is calculated in line 117.

119 // Save density and velocity for printing
120 rho(0, nodeNo) = rhoNode;
121 vel.set(0, nodeNo) = velNode;

rho and vel, updated in lines 120 and 121, are used for printing the field values to file,
and are not strictly necessary for the simulation to run.

123 // BGK-collision term
124 const lbBase_t u2 = LT::dot(velNode, velNode);
125 const std::valarray<lbBase_t> cu = LT::cDotAll(velNode);
126 const std::valarray<lbBase_t> omegaBGK

= calcOmegaBGK<LT>(fNode, tau, rhoNode, u2, cu);

This section defines the BGK-collision term. In line 124, we calculate the square of the
velocity, ~u · ~u, and, in line 125, we calculate the vector object ~cα · ~u. These two variables
are used in calcOmegaBGK, the function that calculates the collision term as described in
section 3.2.14.

128 // Calculate the Guo-force correction
129 const lbBase_t uF = LT::dot(velNode, bodyForce(0, 0));
130 const std::valarray<lbBase_t> cF = LT::cDotAll(bodyForce(0, 0));
131 const std::valarray<lbBase_t> deltaOmegaF

= calcDeltaOmegaF<LT>(tau, cu, uF, cF);

This section defines the correction to the BGK-collision term due to the forcing scheme.
Besides cu, that is already evaluated, we need to calculate ~u · ~F (line 129) and ~cα · ~F (line
130). The correction term

∆Ωα =

(
1− 1

2τ

)(
~cα · ~F
c2
s

+
(~cα · ~F )(~cα · ~F )− c2

s(~u · ~F )

c4
s

)

is calculated in line 131.

133 // Collision and propagation
134 fTmp.propagateTo(0, nodeNo, fNode + omegaBGK + deltaOmegaF, grid);
135
136 } // End nodes
137
138 // Swap data_ from fTmp to f;
139 f.swapData(fTmp); // LBfield

In the last line of the bulk-node loop block, we will propagate the LB distribution in f to
the LB distribution fTmp using the LbField function propagateTo, described in section
3.2.13. Line 136 ends the bulk-node for-loop block. To finish the propagation scheme f
and fTmp swaps data on line 139 so that we can still use f as our lb distribution when we
use boundary condition objects and functions.
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141 // *******************
142 // BOUNDARY CONDITIONS
143 // *******************
144 // Mpi
145 mpiBoundary.communicateLbField(0, f, grid);
146 // Half way bounce back
147 bounceBackBnd.apply(f, grid);

After we have finished with the bulk nodes, we apply the boundary conditions. In line 145,
we communicate with neighboring processes, as part of the parallelization scheme. The
communication is handled by the mpiBoundary object (see section 3.2.10 for more details).
The bounce back boundary scheme is conducted in line 147 with bounceBackBnd’s apply
function.

149 // *************
150 // WRITE TO FILE
151 // *************
152 if ( ((i % nItrWrite) == 0) ) {
153 for (auto nn: bulkNodes) {
154 velIO(0, 0, nn) = vel(0, 0, nn);
155 velIO(0, 1, nn) = vel(0, 1, nn);
156 velIO(0, 2, nn) = 0;
157 }
158 output.write("lb_run", i);
159 if (myRank==0) {
160 std::cout << "PLOT AT ITERATION : " << i << std::endl;
161 }
162 }

(a) Density (b) Velocity magnitude

Figure 3.5: The figures shows the fluid density in (a) and the velocity magnitude,
√
~u · ~u,

in (b) for the run described in this section. All values are given in LB units.

All field added to the output object is plotted by using the write command in line 158.
In line 153 to 157 we updated the values in the ad hoc velocity object velIO.

164 } // End iterations
165
166 MPI_Finalize();
167
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168 return 0;
169 }

Finally, we are at the end of the main-file. The time-iteration loop block ends at line 164.
The MPI communication is shut down with MPI_Finalize and line 168 and 169 ends the
main function.

After the program has finished, all files written by the Output objects will be found
in the folder set by outputDir in line 33. These files are in the vtk format, and in this
project we have used paraview4 to view and analyze the files. In figure xx we show the
density and velocity magnitude for a run of the case above using the paraview program.

4see https://www.paraview.org/
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4 Simulation of non-Newtonian rheologies

In many fluids the relation between the viscous stress and the velocity changes can be
extremely non- linear, and it may very well depend on other properties of the fluid. These
fluids are called non-Newtonian fluids. A subset of these, where σ′ij = 2µeff(γ̇)Eij , are
classified as generalized Newtonian fluid. Here, the viscosity is a function of the strain rate
γ̇ =

√
2EijEij .

For a Carreau-model fluid

σ′ij = 2

{
µ∞ + (µ0 − u∞)

[
1 + (λγ̇)y0

]n−1
y0

}
Eij = 2µeffEij , (4.1)

where µ0 is the viscosity at zero strain rate, µ∞ is the viscosity at infinite strain rate, λ
is the time constant that determines the onset of shear thinning, y0 is a tuning parameter
used to improve the viscosity match at shear rates γ̇/λ ∼ 1 (here, y0 = 2), and n is the
shear thinning index. This index is known to depend on the polymer concentration. the
relaxation time λ normally decreases by decreasing the intrinsic viscosity.

For a Papanastasiou-model type fluid [11]

σ′ij = 2

{
µp +

τ0

[
1− exp

(
−m

√
2EijEij

)]
2
√

2EijEij

}
Eij = 2µeffEij , (4.2)

where µp is the plastic viscosity of the yielded material, and τ0 is yield stress.
For a Papanastasiou-model type Herschel-Bulkley fluid

σ′ij = 2

{
µp (2EijEij)

(n−1)/2 +
τ0

[
1− exp

(
−m

√
2EijEij

)]
2
√

2EijEij

}
Eij = 2µeffEij , (4.3)

4.1 Calculating the effective LB relaxation time τ for non-
Newtonian rhelogies

In the LB model, it may be shown that the strain rate tensor

Eij =
1

2ρc2
sτ∆t

Ẽij , (4.4)

where fneq
α ≡ fα − f eq

α and

Ẽij = −

[∑
α

fneq
α cαicαj +

1

2

(
uiFj + ujFi + uiujq + c2

sqδij
)
∆t

]

= −

[∑
α

fneq
α Qαij +

1

2

(
uiFj + ujFi + uiujq

)
∆t

]
(4.5)
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Figure 4.1: Figure of the tabulated viscosity as a function of strain rate, γ̇ =
√

2EijEij .

τ =
1

ρc2
s ∆t

µeff

(
ẼijẼij

)
+

1

2
, (4.6)

where µeff may be tabulated as a function of the contraction of Ẽij .

4.2 Running a non-Newtonian flow simulation

To run a simulation of a fluid exhibiting non-Newtonian rheology, the simulator needs the
viscosity as a function of the contraction ẼijẼij , where Ẽij is defined in Eqs. (4.4) and
(4.5). This is done through a file containing the tabulated viscosity values with corre-
sponding values for ẼijẼij . This file may generated using a Python script found in the
PythonScripts folder found in the code root directory.

4.2.1 Python script for generating a tabulated viscosity file

The python script viscosity_tabulationDEMO.py shows an example of how the file con-
taining viscosity values may be generated. Here, the Carreau rheology model (see Eq. (4.1))
is chosen as a demonstration. The Carreau model takes 5 input parameters: µ∞, µ0, λ,
y0, and n (see Eq. (4.1) for definitions). In the Python script, these parameters must
be given in lattice Boltzmann units. Given these parameters, the script generates a file
test_rheo.dat. The first line of this file contains the length of table. The rest of the
file is divided into 2 columns: the first column contains values of ẼijẼij , while the second
column contains the corresponding effective dynamic viscosities µeff . In figure 4.1 we show
the generated viscosity that we will use in the test run in this section.
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4.2.2 Key features in the main-file

Initializing chosen rheology

Following the directions given in section 4.2.1 for generating an file containing a tabulated
viscosity behavior, one needs to facilitate the non-Newtonian flow behavior in the BAD-
ChIMP simulator. The first step is to import the viscosity property by constructing a
GeneralizedNewtonian object in when setting up the grid and geometry.

// ********************************
// SETUP THE INPUT AND OUTPUT PATHS
// ********************************
std::string chimpDir = "/BADChIMP/";
...
std::string inputDir = chimpDir + "input/";
...
// ***********************
// SETUP GRID AND GEOMETRY
// ***********************
...
// Read rheology
GeneralizedNewtonian<LT> carreau(inputDir + "test.dat");

In our example we have chosen the object name carreau. In the initialization step above,
it takes the test.dat file as input. This file, which can be generated by following the
directions given in section 4.2.1, must be located in the directory inputDir.

(a) Viscosity (b) Density (c) Velocity magnitude

Figure 4.2: The figures shows the viscosity in (a), the fluid density in (b) and the velocity
magnitude,

√
~u · ~u, in (c) for the run described in this section. All values are given in LB

units.

The non-Newtonian behavior is included in the main time loop through the the BGK
collision term omegaBGK and, through the modified relaxation time tau, the force term
deltaOmegaF.

// *********
// MAIN LOOP
// *********
...
auto omegaBGK = carreau.omegaBGK(fNode, rhoNode, velNode, u2, cu,

bodyForce(0, 0), 0);
...
tau = carreau.tau();
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viscosity(0, nodeNo) = carreau.viscosity();
const std::valarray<lbBase_t> deltaOmegaF = calcDeltaOmegaF<LT>(tau, cu, uF, cF);

Note that carreau.omegaBGK() must be called ahead of carreau.tau() in order to get
the updated value of tau. We can also get the viscosity by using GeneralizedNewtonian’s
viscosity function. The code snippets above is copied from the main-file in folder
/src/polymer_viscosity_tabulation

In figure 4.2 we show the viscosity, density and velocity magnitude for a Carreau
rehology. The geometry and the body force is equal to the standard case presented in
section 3.3.2.
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5 Future work/plans

Our main plan for the numerical package developed in this project is that we aim to include
all new LB methods developed in future projects into the BADChIMP code repository, so
that it will become available for all users. Hopefully, this will also keep the development
of the core libraries up to speed with new developments in both hardware and software, so
that the code will evolve and improve as a general tool for scientific computations.

The code and user manual will continuously be improved as stated in the introduction.
It is our intention that new methods and features will be added as their own chapters, so
that the core of this manuscript will stay more or less the same.

The first planned extension of the code is to include more general polymer models like
the C-Fene-P model. Numerical methods are currently being developed by PhD student
Bjarte Hetland, as part of his thesis work, and will be include in the BADChIMP code
when finished.

The lattice Boltzmann code is also used in projects on bio-cementation, turbulent flow
simulations for wind turbine modeling, and three phase systems, water, oil, and CO2, for
the study of CO2 storage in old oil reservoirs. We expect that the algorithms developed in
these project will become part of the BADChIMP code.

On a more code specific level, we also plan to improve our geometry input scheme so
that we could add vector and tensor fields as input. We would also like to add attributes
to a small subsets of nodes to reduce the size of input files.
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A Parallelization

A.1 Deadlock prevention

In the LB code each processor has a list of neighboring processors which it sends and
receives data from. This list has the following properties:

1. If processor A is in processor B’s list of neighbors, then processor B will be in pro-
cessor A’s list of neighbors.

2. Processor A is not part of its own list of neighbors.

3. A list of neighbors is sorted in ascending order, based on rank.

The send/receive code follows the structure given below:

for (auto neigRank: listOfNeighbors) {
if (myRank < neigRank) {

// SEND DATA to neigRank
// RECEIVE DATA from neigRank
} else {
// RECEIVE DATA from neigRank
// SEND DATA to neigRank

}
}

We will argue, based on the Coffman conditions1, that this structure is enough to avoid
deadlock.

Here, we will show that the assumption of a circular wait condition will lead to a
contradiction. We assume that there are n processes (or processors), p, waiting for each
other, so that p0 is waiting for p1, p1 is waiting for p2, and so on until pn−1 is waiting for
p0. We call the set of processes that are part of the circular wait loop for a circular wait-set
(CWS). Now, let pk be the process with the lowest rank in a CWS. Since it has the lowest
rank, it must be waiting to send to a process, pk+1, with a higher rank, as given by the
code structure above. And, since pk+1 is in pk’s list of neighbors, pk is in pk+1’s list of
neighbors. pk+1 must either be waiting to send to, or receive from, pk+2. If pk+2 is equal
to pk we know that pk’s rank is lower than pk+1’s and pk+1 should be waiting to receive
data from pk. But this makes the circular wait condition stated above invalid. Hence, pk+2

must be a different process than pk. We then know, by assumption, that the rank of pk+2

is higher than pk’s, which means it is in a later position in pk+1’s list of neighbors (since it
was sorted in ascending order). pk+1 should then already have been waiting to receive data
from pk, as the list of neighbors is traversed from lowest to highest values. But since pk is

1See: https://en.wikipedia.org/wiki/Deadlock
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already waiting to send to pk+1, this will again make the circular wait condition false, as
pk would no longer wait to send to pk+1. Thus, the assumption of a circular wait condition
leads to a contraction, which proves, by reductio ad absurdum, that the proposed parallel
communication protocol cannot lead to a deadlock situation.
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B Geometry file format

This is a description of the geometry file format we have called vtklb. This is the format
that is read by BADChIMP to include geometries and spatial varying data. This formate
is based on the VTK-file format1.

The overall tile format is given below.

# BADChIMP vtklb Version 0.1 <header>
one line descriptioin <title>
ASCII | BINARY <data type>
DATASET type <geometry/topology>
...
POINT_DATA n <dataset attributes>
...

B.1 Geometry/topology

The available dataset-type for geometry/topology is the "unstructured lb grid" and "struc-
tured lb grid":

DATASET UNSTRUCTURED_LB_GRID
NUM_DIMENSIONS nd <nd: int number of spatial dimension>
GLOBAL_DIMENSIONS n0 n1 ... <Size of the bounding box of the system>
USE_ZERO_GHOST_NODE <use node 0 as the default ghost node>
POINTS n dataType <n: number of points>
p1_xp1_y... <point/node spatial position>
p2_xp2_y...
...
LATTICE nq dataType <nq: number of basis vectors>
c0_xc0_y... <basis vecotor elements>
c1_xc1_y...
...
NEIGHBORS dataType <list of neighbor nodes for each node>
i1_0i1_1...i1_(nq-1) <node number of neighbor nodes>
i2_0i2_1...i2_(nq-1)
...
in_0in_1...in_(nq-1)
PARALLEL_COMPUTING rank <rank: rank of the current processor>
PROCESSOR n rank <n: number of point, rank: neighbor processor>
i0j0 <i: node this rank, j: node neighbor rank>
i1j1

1https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
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...
i(n-1)j(n-1)

Comments to entries:

dataType: Numrical type of entry data, i.e. int (integer) , float (float), double (double),
...

NUM_DIMENSIONS: (Optional, Default: nd=3) Specify number of spatial dimensions. In vtk
it seems that all vectors and positions are given with three components.

GLOBAL_DIMENSIONS: Gives the size of the system in each Cartesian direction include the
ghost node rim. This entry should be the same for all processors. This information
is needed by the vtk-output routine.

USE_ZERO_GHOST_NODE: (Optional) Treat node 0 as a placeholder for a node that is not in
use (i.e solid nodes). This means that we begin numbering points from 1, not 0. If
the key word is written then this feature is enabled.

POINT: Same as for the vtk-format. NB if USE_ZERO_GHOST_NODE is enabled then the the
first entry has node number 1, the next has 2 and so on. If USE_ZERO_GHOST_NODE
is disabled the first entry has node number 0.

LATTICE: Description of the set of basis vector. We can check these with the ones used in
the BADChIMP code and map one set to the other if that is needed.

NEIGHBORS: For each node there is a list of nq nodes. The node number corresponds to the
position in the list under the POINTS-keyword and the position in the list of neighbors
corresponds to the basic vector in the list under the LATTICE-keyword.

PARALLEL_COMPUTING: Begins the block describing the processor-to-processor communica-
tion. rank is the rank of the current processor.

PROCESSOR: Information about neighboring processor. n is the number of nodes at the
current processor that is used to represent the nodes at a neighboring process. rank
is the rank of the neighboring node. In the list under the keyword, the first entry, i,
is the node number in the geometry in the current processor that represent the node
with number j in the neighboring rank, which is the second entry on the line.

DATASET STRUCTURED_LB_GRID
NUM_DIMENSIONS nd <nd: int number of spatial dimension>
GLOBAL_DIMENSIONS n0 n1 ... <Size of the bounding box of the system>
LOCAL_DIMENSIONS n0 n1 ... <Size of the system on the given processor

excluding the rim of ghost nodes>
LOCAL_RIM_WIDTH nw <nw: int number of rim width>
LOCAL_TO_GLOBAL_POS po p1 ... <Sets the global position relative to

the local origo>
LATTICE nq dataType <nq: number of basis vectors>
c0_xc0_y... <basis vecotor elements>
c1_xc1_y...
...
PERIODIC_NODES n rank <n: number of point, rank: neighbor processor>
i0j0 <i: ’ghost’ node, j: bulk node>
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i1j1
...
PARALLEL_COMPUTING rank <rank: rank of the current processor>
PROCESSOR n rank <n: number of point, rank: neighbor processor>
i0j0 <i: node this rank, j: node neighbor rank>
i1j1
...
i(n-1)j(n-1)

Additional comments to entries:

PERIODIC_NODES: Sets the nodes that are periodic on one given processor. This needs to
be handled separately.

B.2 Dataset attributes

Here we use the same formalism as the vtk-file format using the keywords, e.g., SCALARS
and VECTORS. This information is written after the POINT_DATA-keyword.

POINT_DATA n <n: number of point>
SCALARS dataName dataType <list of scalar values>
s0 <s: scalar numerical value of type dataType>
s1
...
s(n-1)

B.3 Example of node numbering

Figure B.1: Concept figure for the node numbering scheme used in BADChIMP. Left:
Geometry where 0 is solid, 1 shows nodes on processor with rank 0, and 2 shows nodes on
processor with rank 1. Middle: Shows the local node labels on the two processors. Right:
Local labeling for processor 1 with rank 0.

Figure B.1 (left) shows an example geometry, where the green and orange areas shows
the partitioning of the computational nodes between processor 1 and 2. In each processor,
the fluid nodes are consecutively labeled starting from 1.

Figure B.1 (middle) shows labeling of the fluid nodes, where the solid nodes (in gray)
will not be given global labels. For standard fluid flow simulations we would like to allocate
memory for the solid wall nodes, but we do not need to transfer wall values between
processors.
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Figure B.1 (right) shows the local labeling for processor 1. Here, the labeling of the
fluid nodes follow that of the fluid nodes on processor 1 illustrated in the middle figure.
Note, however, that the fluid nodes that belongs to the neighboring processor are relabeled.
These nodes need to be linked to the local labels on processor 2. The zero label is used as
a default ghost node.
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