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Objective and target audience

To plan an EOR campaign on a field we envision that an optimal injection scheme must be
found. With the current advancement of ensemble-based methods for history matching, we
foresee that the reservoir engineer might plan the production strategy based on an ensemble
of history matched realizations of the reservoir model. By utilizing an ensemble of realiza-
tions of the reservoir model, the uncertainty in the reservoir description is accounted for. In
this document we will present methodological development for ensemble-based optimization
of EOR processes. For completeness, we also include some methodological development of
ensemble-based optimization in general, and applications on optimization of reservoir drainage
by waterflooding.

In the ensemble-based optimization, an ensemble-based approach is used to find an optimal
strategy. There are a couple of advantages of this approach: (1) It works pretty efficiently
for finding an optimal strategy over an ensemble of models; and (2) it can implemented non-
intrusively with respect to the reservoir simulator (in our studies both ECLIPSE (ECLIPSE)
and OPM Flow (OPM) has been used).

The document is in particular aimed at reservoir engineers and researchers that would get
an introduction to ensemble-based optimization, including optimization of EOR processes on
a reservoir scale. It would also give some results on comparing different EOR strategies, but
these comparisons are of course case dependent and must be reassessed for other reservoirs.
After reading the document, we hope that the reader can make a proper judgment if ensemble-
based optimization is a suitable tool for finding optimal strategies for waterflooding or EOR
processes for other reservoir models.

Introduction

Ensemble-based tools for production optimization has been developed over the last couple of
decades, with a special focus on waterflooding. In our setting it will be important to expand
this to include cases covering injection of smart water, CO2 and polymer. Environmental
constraints, including energy efficiency, should be added in the objective function. When
considering implementation of any IOR or EOR method on a real field, it is of outermost
importance to be able to demonstrate the potential, with as accurate as possible uncertainty
quantification. Ensemble-based optimization has the potential to handle this as it can include
all sources of uncertainties in the ensemble of reservoir models (also referred to as geological
realizations).

In this document we will present ensemble-based optimization of waterflooding and EOR
processes (CO2, polymer and smart water). The optimization is performed to achieve a
maximum net-present-value (NPV) for a given reservoir. The uncertainty in the reservoir
description is included by providing an ensemble of reservoir models where important reservoir
parameters (as porosity, permeability, etc.) varies. Economic input parameters includes oil
price and cost of water injection and production as well as cost related to injection and
production of EOR chemicals. In addition, a discount rate is included, but uncertainties in
economical parameters are excluded.

The methodological development described in this document does not depend on any
particular properties of the reservoir. However, for better illustration, two synthetic fields are
chosen as demonstration cases. The two example cases are the OLYMPUS field designed by
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TNO and the Reek field designed by Equinor. The OLYMPUS field is inspired and loosely
based on Brent-type oil fields in the North Sea (Fonseca et al., 2018). The REEK field is a
reservoir model developed in Equinor and originally used as an internal benchmark model for
testing of different algorithms and workflows (Hanea et al., 2017).

The choice of these two fields for the demonstration of the methodology is based on a
balance between including realistic features in the model and having models where a large
number of simulations can be performed with modest computational resources. The com-
putational time for a simulation of a waterflooding process on the OLYMPUS field is about
10 minutes. The computational time for actual field cases might be larger, but one of the
strengths of ensemble-based optimization is that many of the required simulations can be
run in parallel. Still, a judgment of the required computational load prior to performing the
optimization will be important. For the methodological development that has been done as a
part of the IOR center, it was preferable to work on cases with modest computational time,
without sacrificing to much of realism. The OLYMPUS and REEK fields where considered
as good choices in this respect. Moreover, these fields have both been used in other studies,
making comparisons possible in some cases.
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Methodological Approach

Recommended Optimization Workflow
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Figure 1: General optimization workflow for
reservoir management.

A general workflow for ensemble-based op-
timization in the context of reservoir man-
agement is shown in Figure 1. Optimization
algorithms play a key role for updating con-
trol variables in order to prepare for the in-
put files for reservoir simulations. The eval-
uation of the objective function depends on
output files from the simulator, which can be
time consuming for large reservoirs, particu-
larly for EOR processes. Therefore, the ef-
ficiency of the optimization algorithm is one
of the concerns for this problem. In this as-
pect, ensemble-based optimization methods
have attracted high interest in recent years.
For the optimization tasks of the IOR Cen-
tre, we have investigated the use of ensemble-
based optimization as this fits well with the
task that using ensemble-based methods for
history matching that has also been pursued
within the IOR Centre.

There is a freedom in formulating the ob-
jective function. In the cases we have stud-
ied, it is formulated by calculating the net
present value (NPV). The objective function
should then account for the profit of the pro-
duced oil and costs of the injected and pro-
duced water. In addition, there comes the
cost for injected and back-produced EOR gas
or chemical.

Consider the net present value function
J(u, θθθ) that depend on a set of control vari-
ables u, and a state variable θθθ that represents
the geological realizations (reservoir models).
In general, the same control strategy should run on an ensemble of reservoir models using the
reservoir simulator (for example Eclipse or OPM Flow), and the expected NPV is calculated
as the mean over the ensemble. The objective is to find u such that the expected value of J
is maximized. This can be expressed mathematically as

J(u, θθθ) =
1

Ne

Ne∑
j=1

Nt∑
i=1

[(roQo,i(u, θj) + rgQg,i(u, θj)
)
− rwIQwI ,i(u, θj)− rwPQwP ,i(u, θj)−Ri,j
(1 + dτ )

ti
τ

]
(1)

where the index j represents the ensemble member, the index i the time step, Ne is the
number of ensemble members and Nt is the number of time steps. dτ is the discount rate
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for a period of time τ (days); ti is the sum total time (days) from the start of production
up to the ith time steps; ∆ti is the period of time (days) between the time steps ti and ti−1;
Qo,i and Qg,i are the total amount of oil and gas production over the time interval ∆ti; QwI ,i
and QwP ,i are the total amount of water injection and production in time ∆ti; ro, rwI , rwP ,
and rg represent the price of produced oil, cost of water injection and production, and the
price of gas production respectively. The term Ri,j represents the cost of injection and back
producing of a EOR chemical/gas for time step i and ensemble member j, and it might have
the form

Ri,j = rIQI,i(u, θj) + rPQP,i(u, θj)

where QI,i and QP,i are the total amount of EOR chemical injection and production over
the time interval ∆ti respectively; and rI and rP are the costs of injection and production
of the EOR chemical, respectively. For all the quantities in the above equations, appropriate
units must be chosen. (In the case of optimization of a plain waterflooding case Ri,j can be
omitted.)

The optimization problem is now to find the optimal vector u maximizing J(u, θθθ) over
all admissible vectors u. The length of the vector u depends on the formulation of the
optimization problem. The control vector u will depend on the steering of the wells, how
frequent the strategy can be changed, and so forth. For example, it can be set that the
injection and production rates for each well can be changed every three months over the
optimization window (assuming a pure waterflooding case). Typically, there will be some
bound constraints on the variables, ui, for instance representing the fact that a production
rate must be non-zero and below some upper bound for the allowable production from that
well. In addition, we will have “output constraints” which is very commonly used during
petroleum production. These are non-linear constraints that represent operational limits and
they are usually evaluated using the reservoir simulator. A typical example is pressure limits
for injectors or producers in a model where the wells are operated using flow rate targets
(given by the control variables).

Ensemble-based Optimization (EnOpt)

The EnOpt method and its variations have been widely implemented in various application.
Here, we will briefly introduce the concept and some key formulas for this algorithm. Some
references for more details are Chen et al. (2009), Fonseca et al. (2017).

A conceptual diagram of EnOpt can be found in Figure 2. Assume we need to find
an optimal solution within a feasible region that optimize the objective function shown in
Equation (1). We first set a starting point u0, and decide for an initial covariance matrix to
use for the sampling of data points. For a general step (including the first), the current best
solution is given as uk which is set as the mean in a multinormal distribution. We generate
an ensemble of data points around the mean with a predefined covariance matrix. The data
points are then evaluated to get objective function values in order to approximate the gradient
Gk. If the objective function is improved, we update the mean to uk+1, otherwise, we do a
line-search to seek for other possible solutions. This process is repeated iteratively until the
algorithm converge. The optimal solution u∗ is found when the algorithm is finished.

Originally the EnOpt algorithm was proposed as an approximation to the pre-conditioned

7



steepest ascend method

uk+1 = uk + βk
Ck

uG
T
k

||Ck
uG

T
k ||∞

, (2)

where k = 0,1,2,... is the index for optimization iteration; βk is step size obtained by simple
auxiliary search method (Nocedal and Wright, 2006), Gk is the approximate gradient vector
of the objective function in Equation (1) with respect to uk, C

k
u is the user-defined covariance

matrix of the components of uk, and ||.||∞ is the infinite norm.

Figure 2: A conceptual diagram of
the EnOpt algorithm.

The combination Ck
uG

T
k can be approximated us-

ing the simple cross-covariance between uk and the
objective function J(uk, θθθ) (see the details in (Chen
et al., 2009)). In the presence of geological uncer-
tainty, Fonseca et al. (2017) implemented an improved
version of the gradient approximation which has the
form

Ck
uG

T
k ≈

1

N − 1

N∑
j=1

(uk,j − uk)
(
J(uk,j , θj)− J(uk, θj)

)
.

(3)

(Here J(u, θj) denotes evaluating the objective func-
tion using control strategy u for the reservoir simu-
lation model θj , (i.e., a single ensemble member j is
used in (1) whereas J(u, θθθ) denotes evaluating the full
objective function (1) which requires evaluating all the
ensemble members for the control u.

The optimization process continues until the up-
dating scheme converges. In this study, the scheme
converges when the following criteria is sufficiently satisfied:

|J(uk+1, θθθ)− J(uk, θθθ)|
|J(uk, θθθ)|

≤ ε, (4)

where ε is a given tolerance.
For the initialization and update of covariance matrix Ck

u, we refer to the work of Stordal
et al. (2016).

Constrained Optimization with Exterior Penalty Function (EPF)

In reservoir management, the liquid injection and production process yield to certain con-
straints. Therefore, the optimization of the objective function is subject to a well-defined set
of constraints on the designed control variables (such as the water rate of each injecting well
at each control time step, etc.). In this section, we present a general constrained optimization
(maximization) problem, often encountered in science and engineering. The work is based
on the paper by Oguntola and Lorentzen (2021a). In that paper the methodology is demon-
strated for traditional water-flooding, and the results are not repeated here, but we include
the principles for solving constrained optimization problems.
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If we convert the maximization problem to a minimization problem, f(u) = −J(u), then
the general Nu−dimensional constrained optimization problem is written as

min
u∈RNu

f(u) (5)

subject to: gi(u) ≥ 0, ∀i ∈ I (6)

hj(u) = 0, ∀j ∈ E, (7)

where gi and hj are the underlying constraint functions (from RNu into R respectively), I and
E are the indexing sets for the inequality and equality constraints respectively. Any bound
constraints that applies can be rewritten in the form (6).

Suppose that a given constrained optimization problem is in the form of Equations (5) -
(7). Let D ⊂ RNu be the domain of feasible solutions. Hence, RNu\D is the set of infeasible
points. To solve the problem, first, we transform it into a sequence of unconstrained sub-
problems using the exterior quadratic PF method. In each subproblem, Pk, k = 1, 2, ..., is a
penalty function defined as follows;

Pk(u, rk) = f(u) + rk

(∑
i∈I

(min{gi(u), 0})2 +
∑
j∈E
|hj(u)|2

)
. (8)

It can be shown that the following sequence of unconstrained subproblems converges to a
feasible solution:

min
u∈RNu

Pk(u, rk), ∀k = 1, 2, ..., (9)

where rk is an increasing sequence of positive penalty parameters. We use a simple relation
for the penalty parameters given by rk+1 = crk, k = 1, 2, ..., where c ≥ 1 and the first term,
r1 > 0, are carefully selected constants.

Validation

The developed approach has been validated through testing on three models with increasing
complexity. The first example is a classic synthetic 2D reservoir with a 5-spot configuration
of the wells, with an injector in the center and one producer in each of the four corners. The
second model used for the verification is the REEK model, a synthetic model developed by
Equinor. Finally, we present some result on the synthetic OLYMPUS field, designed by TNO,
inspired by a Brent like reservoir.

EOR methods for a 5-spot case

In this section the workflow is validated using EnOpt to solve the optimization problem (1)
using polymer, CO2, and smart-water (brine) EOR methods. We used optimization results
to quantify the values (with traditional water flooding as a reference point) and rank of EOR
methods. The value quantification of the EOR methods involves evaluating the economic
benefits (in terms of oil and water productions and expected NPV ) of the EOR optimal
solutions compared to that of water flooding.

We consider a synthetic 2D 5Spot oil field with a single (Ne = 1) reservoir model. It has
three-phase flow (including oil, water and gas). There are four producers and one injection
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well arranged in a five-spot pattern as depicted in Figure 3. The model is uniformly discretized
into 50 × 50 grid cells, with ∆x = ∆y = 100 m. It has approximately 30% porosity with
heterogeneous permeability map. The initial reservoir pressure is 200 bar. The original oil in
place (OOIP) is 4.983× 106 sm3. Fluid properties is close to that of a light oil reservoir.

Figure 3: Porosity distribution of the five-spot field

The optimized NPV and total field oil production is shown on Figure 4. For this study,
CO2 injection achieve the highest NPV and total oil production. All EOR methods out-
perform traditional water flooding. For more details we refer to Oguntola and Lorentzen
(2021b).

(a) NPV variation (b) Field Oil Production Total

Figure 4: (a) Comparison of the change in NPV with iteration for the EOR-methods and
water flooding for the 5Spot field. (b) Comparison of the field oil production total (FOPT)
from optimal solutions for the EOR methods and water flooding for the 5Spot field.
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EOR methods for the Reek field

In this case, we consider a more complex 3D optimization problem with geological uncertain-
ties and examine impact on EOR effects. The tests are performed on the synthetic Reek field
designed by Equinor. The reservoir has three-phase flow (including oil, water, and gas). It
is defined on an irregular grid system of dimensions 40× 64× 14 partitioned into 35840 grid
cells with different sizes. The reservoir has three zones (UpperReek, MidReek, and Lower-
Reek) with six faults and different porosity and permeability. The model is equipped with
five producing and three injecting wells (see Figure 5). All producers and one injector are
spatially positioned throughout the oil-containing region, while the remaining two injectors
are in the water saturated zones on the accord of engineering intuition. Like in the 5-spot
reservoir, fluid properties are similar to that of a light oil reservoir. Moreover, we consider
and quantify uncertain properties such as facies, porosity, permeability, oil-water contacts,
and transmissibility across five faults (out of the six). Fifty geological realizations (Ne = 50)
are used to account for these uncertainties in the reservoir. Although there are 35840 grid
cells, not all of them are active. The number of active cells varies with geology. On average,
the original oil in place (OOIP) is 4.831× 107 sm3.

Figure 5: The initial saturation map for oil, water and gas of the Reek field.

The optimized NPV for the different EOR methods are shown on Figure 6a. Also in this
case the CO2 method achieve the best NPV. Figures 6b and 6c show the total oil production
and total water production, for the 50 geo-models. From these plots we see that CO2 has
generally higher oil production and lower water production, compared to the other methods.
Polymer injection generates highest water production. The results are sensitive to the cost
of the injected CO2 or chemicals. The cost translate to solving optimization problems with
different objective functions, and it is paramount to use values that reflect the current market
and tax level for practical application. For more details we refer to Oguntola and Lorentzen
(2021b).

EOR using waterflooding and polymer on the Olympus case

The optimization workflow using EnOpt was validated on the benchmark case OLYMPUS
field (TNO, 2017). The OLYMPUS field (Figure 7) is a synthetic reservoir model prepared by
TNO (TNO) for an exercise in field development optimization (Chang et al., 2019). Here, we
consider the well control problem from a different perspective by using well economic limits
(WECON) and injection pressures as parameters to optimize the objective function - the Net
Present Value (NPV). The WECON is quantified by the water cut values in this work.
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(a) NPV variation (b) FOPT (c) FWPT

Figure 6: (a) Comparison of the change in NPV with iteration for the EOR-methods and
water flooding for the Reek field. (b) Comparison of the field oil production total (FOPT)
from optimal solutions for the EOR methods and water flooding for the Reek field. (c)
Comparison of the field water production total (FWPT) from optimal solutions for the EOR
methods and water flooding for the Reek field.

Figure 7: OLYMPUS case with reference wells. The field shows oil saturation for the first
model realization. Red, green, and blue represent approximately 0.92, 0.43, and 0, respec-
tively.
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Because of the stochastic behavior of EnOpt methods, multiple starting points and re-
peating experiments with different random seeds are recommended. Same as in this study,
we had different experiments and the results of the experiment which gives the best NPV is
shown in Figure 8. Figure 8a shows that the starting value of WECON at 0.88 is suboptimal,
and some wells become uneconomical earlier than when the water cut reaches 0.88, while
other wells are eligible to produce at a higher water cut. In Figure 8b, the red stars show
the trial steps that are not successful during the optimization. In this case, the back-tracking
step size failed to improve the objective function for 3 times and the covariance adjustment
failed twice before the EnOpt algorithm stops. The optimal WECON values of each producer
are listed in Table 1.

(a) WECON (b) Objective function

Figure 8: Optimization results of the best run. Evolution of the control variables (WECON),
the objective function, the step size and the ensemble perturbation covariance during each
iteration. The red stars in the objective function plot represents the failed trial steps during
the optimization.

Table 1: Optimal values of WECON from the best run.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Optimal Values 0.90 0.78 0.75 0.80 0.92 0.74 0.89 0.80 0.78 0.87 0.83

Using the optimal solution of injector BHP of Chang et al. (2019) as one of the starting
points, we had several extra experiments and the highest NPV achieved is $15.74× 108. The
total number of simulations required to reach this optimal solution was 2350, which is ten
times more efficient compared to the computational cost of Silva et al. (2019), which achieved
a slightly higher NPV with ten times more simulations. This shows the efficiency of the
EnOpt method. Because EnOpt requires relatively small number of simulations, it gives us
the opportunity to repeat the experiments multiple times, which may find better results than
what we can obtain with only one run of the optimization workflow.

The ensemble-based method for EOR is validated using polymer for the OLYMPUS field
(see also Oguntola and Lorentzen (2020)). At the time of this experiment, some EOR func-
tionalities in the OPM Flow simulator was not fully developed for CO2 and smart-water EOR
processes. The objective function of the optimization problem is the NPV given by Equa-
tion 1. In the study we assume that there is polymer desorption with no degradation. We
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simulate reservoir fluid flow using the Open Porous Media (OPM) Flow simulator (OPM).
We obtain the optimal well controls for polymer flooding that maximize the objective func-
tion, and compare the result with optimized conventional continuous water flooding. The
benefit is not only increased oil recovery, but also reduced cost and environmental impact due
to reduced water and polymer injection and production. The results for polymer flooding
(PF) and continuous water flooding (CWF) is shown on Figure 9.

Figure 9: Comparison of the change in NPV with iteration for CWF and PF (left). Com-
parison of the field oil production total (FOPT) from optimized CWF and PF (middle).
Comparison of the field water cut (FWPT) from optimized CWF and PF (right).

Conclusions and recommendations

Ensemble-based optimization has been demonstrated as a useful tool for optimization of wa-
terflooding processes, and with the recent works (Oguntola and Lorentzen, 2021b, 2020) also
for optimization of EOR processes. Although the field cases used in the presented studies
are synthetic, one can easily apply the methodology to real fields as well. For more com-
plex models, some considerations about the computational time might be required before a
decision on running ensemble-based optimization is done. The computational performance
will depend on a number of factors, including the size of the ensemble of reservoir models
used to account for the uncertainty. The computational time will decrease substantially if the
reservoir simulations can be run in parallel. An issue to consider in the formulation of the
optimization problem is the number of optimization variables. It might be easier to obtain
good estimates of the gradients with fewer variables. It is still a topic for further research to
improve the methodology for ensemble-based optimization.

Ensemble-based optimization is easily adapted both with respect to the choice of reservoir
simulator (in our studies ECLIPSE (ECLIPSE) and OPM Flow (OPM) has been used) and
the formulation of the optimization problem. In our case, a wrapper has been constructed
that produces input files depending on the current setting of the optimization variables and
reads the required output from the simulations to calculate the objective function. There is
no need for doing any internal coding in the simulator, making it easier to get started with
doing the optimization.

The primary purpose of the described optimization algorithm is to improve the economic
impact of the reservoir by finding good strategies for the production. The environmental
impact is in our studies accounted for by including cost terms in the objective function for
produced and injected water and EOR chemicals. Some adaptions might be needed to handle
a case when there is, say, a limit on the allowed amount of back produced polymer.
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It will obviously increase the impact of the present work if the methodology is included in
a more streamlined workflow, as for instance in software developed for ensemble-based history
matching or fast model updating. Since the developed methodology for optimization of EOR
processes is rather new, it is to our knowledge, not yet tested at any field on NCS.
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